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Abstract

Automated Analysis of Neuronal Morphology: Detection,
Modeling and Reconstruction

This thesis addresses the problem of automatic analysis of neuronal tree mor-
phology: from detection, modeling to digital reconstruction of tubular branches
of neurites from 3D Light Microscopy image stacks. Comprehending the com-
plex structure and connections of the neurons is key to the study of brain devel-
opment and functioning. Advances in neuro-imaging has enabled us to capture
such neuronal morphology in previously unimaginable details. The huge vol-
ume of rich and heterogeneous data generated, however, makes expert manual
analysis of such images tedious, subjective and prohibitively expensive. Thus,
robust, scalable and highly automated algorithms are desired to analyze such
data. In this thesis, we propose a framework for automated quantification of
neuronal morphometrics. We target three important methodological areas of
biomedical image analysis.

First, we present an automated, unsupervised object detection framework
using stochastic marked point processes. We propose special configurations
of marked objects and an energy function well adapted for vessel-like tubular
structure networks. It incorporates both radiometric properties and high level
structural constraints into a probabilistic formulation and global optimization
scheme. This enables extraction of connected neuronal networks by fitting an
optimal configuration of spheres to the centreline of the branches giving us the
position, local width and orientation information.

Second, we explore the problem of modeling of single neuron morphology.
We propose new priors for accurate identification of critical nodes like bifurca-



tions and terminals and sophisticated semantic interpretation of complex neu-
ronal morphology. Such explicit modeling of neurites derive various character-
istic morphological and geometrical parameters such as total length, internodal
lengths, branching index, branching angles, average branch curvature etc., to
describe the neurons. We tackle parameter estimation for the marked point pro-
cess model by relating the model parameters to the application data. A critical
analysis of the sensitivity and robustness of the model identifies the parameter
dependencies and rules for initialization of the critical parameters.

Third, we focus on reconstruction of neuronal branches using robust and ef-
ficient numerical fast marching methods into connected minimum spanning tree
representations. We exploit image potential in evaluating the connectedness of
nodes that are Euclidean neighbors to remove the false positives. Thus, we gen-
erate a mathematical description abstracting out the important position and con-
nectivity information about neuronal branches from the microscopy data. Such
digital reconstruction can be represented in the standard SWC format, preva-
lent for storage, sharing, and further analysis in the neuroimaging community.
Our proposed pipeline outperforms existing neurite tracing algorithms and min-
imizes the subjective variability in reconstruction, inherent to semi-automatic
and semi-manual methods.

Keywords: Neuron morphology description; Marked point processes; Fast march-
ing; Neurite tracing; Digital reconstruction.

Thesis Advisors:
Professor Daniel Racoceanu
Associate Professor Wei Tsang Ooi
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1.1 Motivation: automatic analysis of high content,

high resolution data

Various biomedical techniques rely largely on image data as their primary source

of information. The emergence of fluorescence labeling technologies and the

development of sophisticated imaging microscopes, such as confocal and multi-

photon, has enabled acquisition of high-resolution digital images of neuronal

networks both in vitro and in vivo. This allows the cellular bio-chemists and

neuro-anatomists to monitor their structural dynamics in response to various

stimuli. Neuroscience has unearthed a strong structure-function relations in the

nervous system. The intricate connections and patterns of the neuronal fibres

throughout neuron networks, retain what we have learned, and how we respond

to external stimuli. This structure-function relation of the nervous system even-

tually influences our higher order cognitive functions such as speech, motor

functions and intellectual capacities. Hence, the ability to accurately capture

the morphological information of neuronal trees and their connections and track

their dynamic changes is crucial to a better understanding of the brain and its

functions.

While the technological advances and development of new imaging modal-

ities like Super Resolution Imaging, Serial Section Electron Microscopy have

opened up exciting avenues of investigation in neuroscience; it also gives rise to

unimaginably vast quantities of image data. Consequently, it created a number

of computational, algorithmic, and mathematical challenges involving the anal-

ysis and modeling of high-resolution data. In [95], the authors talk about the new
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era in biomedical informatics where focus is on brain atlas building for model

organisms, understanding the dynamic processes in cells of living organisms,

reconstruction of 3D neuronal structures and generating the wiring diagram of

a brain. Such tasks place higher demands on traditional segmentation, registra-

tion, annotation, mining, indexing and visualization methods. There is a clear

requirement for algorithms to analyze biomedical images in a more expressive

way than traditional methods.

Recently, there have been successful attempts at construction of brain at-

lases for model organisms like mouse, drosophila, zebra fish etc., to promote

simulation based research [66]. The Allen Atlas Project [1] developed a Google

Earth-like tool that allows interactive navigation through the nervous system

model of certain organisms with anatomical and ontological information inte-

grated with corresponding morphological structures. Simulation based research

will enable us to gradually move away from experiments on live animal once

there is enough knowledge, data, computing power and intelligence to support

their biological objectives.

Progress in the above described direction would require detailed Brain At-

lases with descriptive parameters for common neuron types such as average total

length, branch length, branching order and angles. This enables to statistically

compare different populations of neurons or to quantify changes in morphology

for the same class of neuron over time in 4D time series data, which is the future

goal in neuroscience [47]. It is known that morphology/structure is intricately

related to neuronal functions. The characterization of normal and degenerated

morphology allows early detection and analysis of pathological conditions.
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Till date, understanding the brain physiology remains an elusive task. To

enable scientists to ask and answer questions about the brain of evolved organ-

isms would require reverse engineering the complex anatomical and functional

wiring of the neuronal networks that make up the brain. An interesting exam-

ple is the Blue Brain Project [2], which attempts to synthesize and simulate the

neocortical columns of human brain to create the first virtual brain capable of

emulating the intelligence of a regular human. A detailed computer model of a

virtual brain that is truly equivalent to the biological counterpart, could in prin-

ciple allow scientists to carry out experiments that could not be performed on

real nervous systems because of physical constraints.

One of the scientific challenge of foremost interest in the current times is

Brain Mapping [9, 46]. Scientists are attempting to develop a synaptic con-

nection level circuit map of the brain at nano scale resolutions called “connec-

tomes”. The complete description of morphology of single neurons is called

the “neurome”; while the study of connectivity and topological changes due

to degenerative diseases changing this model “connectome” is called “connec-

topathology”. It is expected to eventually translate the so generated expertise

into a behavior-structure mapping of the brain.

A critical step for all these efforts is quantitative analysis of neuronal anatomy.

Automated computational methods allow generating highly detailed neu-

ronal morphological structures in minutes compared to manual tracing which

would take months and years. The automated analysis of large image has emerged

as the major bottleneck in neuroscience research, digital histopathology and

other biomedical domains. In neuroscience, it is estimated that while tissue

4



preparation, labeling and imaging takes days; expert manual analysis of the ac-

quired image volumes takes years in terms of man hours. Depending on ex-

perience of the human tracer, there is significant subjectivity and variability in

analysis. Though manual tracing is considered superior in-spite of subjective

variability, it is prohibitively expensive in terms of human labor.

At Light Microscopy resolution, it takes approximately 1 hour per millime-

ter of neurite path, totaling 30 hours to completely trace a single spiny stellate

neuron of rat barrel cortex [49]. In order to reconstruct connections at synap-

tic levels, scientists need to resort to superior microscopy techniques like Se-

rial Section Transmission Electron Microscopy (SSTEM). Manual tracing of

SSTEM data is even slower at 1-2 hours per micrometer, i.e., 200-400 hours per

millimeter of neurite length. Complete analysis of connectomic structures from

SSTEM data is a daunting task estimated to take 24K-80K human work years

for cortical column neurons of evolved species like humans [49]. The DIADEM

Challenge (DIgital Reconstruction of Axonal and DEndritic Morphology) [42]

was organized so that resulting algorithms will push the boundaries of auto-

mated reconstruction on the most challenging data available. The competition

brought together all necessary resources and existing knowledge in this multi-

disciplinary domain to facilitate continuous development of automated neuronal

reconstruction algorithms.

Comprehending the complex neuronal wiring diagram of the brain is key to

understanding its functions. The aim is to create a connectome, i.e., a circuit

map of the brain with details of the wiring of each individual neuron. To appre-

ciate the enormity of the task one can consider the fact that till today scientists
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have managed to create the connectomic mapping of a single, very primitive

organism, the roundworm (C. Elegans) [125]. It is known to have 302 neurons

and approximately 5000 synaptic connections amongst them. It is estimated the

generation of the connectome of the C. Elegans took 15 years of man hours.

The complexity of the task increases exponentially for more evolved organisms.

The common fruit-fly (Drosophila Megalonaster) having 100,000 neurons is

estimated to have 107 synapses. In comparison, the average adult human has

85,000,000,000 neurons and a staggering 1015 synapses to map in order to gen-

erate a human connectome. To achieve the aforementioned objective, automated

3D neurite tracing is a crucial step.

1.2 Objective: detection and reconstruction in biomed-

ical images

Advent of various high content,high resolution imaging technologies have ne-

cessitated the development of high throughput analysis. Automation of analysis

of such data will not only speed up the process but can also weed out operator

variability. Grand challenges in mapping the Brain [46], digital histopathology

[52, 102, 51], and remote sensing [59] — all examples of various domains where

very large images are required to be analyzed. For most of these images the rel-

evant information needs to be abstracted out from the image data and quantified

in mathematical models for subsequent analysis. This is a new challenge in

the field of bio-imaging due to the high-content nature and large size of these

images. High-level spatial relation and configuration modeling issues and even

6



semantic approaches are gaining momentum in the image analysis and compu-

tational bioinformatics fields. In particular, it is important to mine high-content,

large scale images in more expressive ways than a purely statistical description

[70]. Hence, efforts in developing frameworks that allow incorporating high

level geometric and shape priors for modeling the data need to be addressed.

The demands of the new era of image analysis requires highly automated algo-

rithms that are also robustly scalable.

The objective of this thesis is two-fold — automatic bio-image analysis and

quantitative image informatics. Firstly, we develop efficient, automatic stochas-

tic marked point process framework for unsupervised extraction and description

of neuronal morphology from 3D microscopy image stacks. We use this ex-

tracted information to adapt fast, robust and accurate numerical methods for

digital reconstruction of neuronal fibres as minimum spanning trees into stan-

dard SWC format. Secondly, we identify critical nodes in neuronal arboriza-

tion such as bifurcation and terminals, which generate further information about

branching index, branch length, branching angles, tapering rate and so on. These

parameters are used to quantify neuronal cell types for classification or morpho-

logical comparison. Before the era of high-resolution imaging, these param-

eters of neuron populations were estimated with classical statistical methods.

The digital reconstructions capturing positional and connectivity information in

standard format help in storage, archiving and subsequent analysis of neuronal

structure.
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Figure 1-1: Digitized representation of neuronal morphology in SWC format.

1.3 Problem definition

There are two principal ways of studying neuronal structures. The classical

neuro-anatomical analysis is based on estimation of certain geometrical descrip-

tive parameter values that typically result in some statistical distribution. In this

case, for generation of virtual neurons, parametric values from such distribu-

tions are sampled stochastically. The second method of representation of neu-

ronal morphology is the digital format that deterministically generates values

for complete description of the neurons. For more details the interested reader

can refer to [8]. This second category of representation has only been made pos-

sible due to recent advances in biomarker and imaging technology that captures

neuronal morphology with unprecedented resolution and magnification. This

enables high-fidelity modeling of neuronal morphology. Our focus is, thus, the

second category of methods. Recent advances in imaging technologies gener-
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ate tera-bytes of data. For example, the nervous system of a nominally evolved

organism like the fruit-fly imaged by Electron microscopy technique for connec-

tomic studies generated 800 tera-bytes of image data. But mostly, this data is

sparse. Digital representation of neuronal morphology results in compact math-

ematical descriptions that offers ease of archiving, exchanging, comparing and

analyzing. Neuronal data are generated through diverse image acquisition tech-

niques such as Fluorescent microscopy or Confocal microscopy, and different

staining techniques like genetic methods or fluorescent proteins. Hence algo-

rithms for general applicability have a very difficult task. Moreover, neuronal

processes can have very complicated orientation and branching pattern. Even

manual reconstructions of the same neuron show significant inter-operator and

intra-operator variability besides being extremely labor intensive.

Given a 3D neuron image obtained by any of the common microscopy tech-

niques, reconstruction refers to a digital record of the morphology of the neu-

ronal process, (Figure 1-1). It involves firstly segmentation of the objects of

interest and then quantification of segmented objects according to their arbor

types. This abstracting out of the neuronal tree from the image data into a math-

ematical model facilitates further querying and analysis. Figure 1-1, taken from

[8], illustrates digitized representation of neuronal morphology in SWC format.

Every critical point (bifurcation node, terminal node and inflection node) is rep-

resented as a 7 tuple with an unique identity (ID). Tag (T) represents arbor type

(Soma 1, Axon 2, Dendrite 3) of concerned point. X, Y, and Z are the coor-

dinates representing the physical position of critical points in 3D image stacks.

’R’ column records radial width of process and last column (C) holds the ID
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of parent node. In this way the SWC representation abstracts out all relevant

information about neuronal morphology from 3D image volumes of several Gi-

gabytes and captures it in a analytical model in a text file.

1.4 Technical challenges

Automatic digitized representation of neuronal networks is being attempted since

Ramon and Cajal proposed the first model of neurons in the 19th century. The

field gathered new impetus in the last 10 years when recent development in mi-

croscopy techniques finally made the necessary data available. The bottleneck to

digitized reconstruction are processing speed, data access (with large data-sets

96 GB of RAM has proved insufficient to hold the entire data at once) and pro-

cessing intelligence for expert automated tracing. While solutions to processing

speed and data access can be achieved through clever parallelization on multi-

core systems or GPU based simulation, processing intelligence remains a much

tougher challenge [90]. Much of the difficulties in neurite tracing arise due to

the artifacts introduced during image acquisition. Such artifacts are unavoidable

given neurons are inherently 3D, but any image acquisition technique records

their 2D projections. Even for imaging a 3D volume the slicing thickness of the

sample limits the resolution in “Z” direction (perpendicular direction to imag-

ing plane) to be much coarser compared to “XY” (in- plane resolution). Images

(Figure 1-2) adapted from [21], illustrate the challenges faced by automatic

neurite tracing algorithms. Examples of automated reconstruction demands are

explained as follows:

10



Figure 1-2: Challenges faced by automatic neurite tracing algorithms.

Figure 1-2a shows fibers reaching the limit of light resolution resulting in

fuzzy structures with unclear boundaries when zoomed-in. Black dashed arrow

shows slight image tile offset due to stitching together neighboring overlapped

sections. This kind of artifact arises when the region to be imaged is too large

to be captured all at once.

Figure 1-2b shows how 2-D projections of neurons which are typically 3-D

objects result in obscuring branch connectivity at critical points like bifurcations

and overlaps (green arrow). Neurite boutons show up as detached blobs (orange

arrows in Figure 1-2b and green arrow in Figure 1-2c). Out-of-focus branches

11



exhibit ’halos’ that can be mistaken for additional parallel branches (purple ar-

row) are highlighted in Figure 1.2c. Close lying parallel processes can in turn

be mistaken for “halo” effect.

Neurite branching can be quite complex and manual tracing is tedious, time

consuming and subjective. As seen in Figure 1-2e, there is often inter and

intra operator variability (marked in different colors). The pink traces form a

closed loop which is impossible in a neuronal tree. This is a major point of

contention in the field as newer algorithms performing better than interactive

or semi-automated manual traces are penalized on comparing against gold stan-

dard manual reconstructions. Branch gaps (red square zoomed-in on the right)

resulting from inhomogeneous staining of the neuronal processes or noise in-

jected during image acquisition are shown in Figure 1-2d. For an elaborate

description of such artifacts one can refer to [21].

Manual tracing can resolve such ambiguities in neurite tracing by follow-

ing Gestalt principles of human perception [80]. But with 10,000 fold increase

in speed desired, manual tracing is time-wise an infeasible option. Automatic

tracing needs to be enabled with the intelligence to emulate human operators

in resolving such ambiguities and also to root out the subjectivity of manual

reconstruction.

1.5 Overview and contribution

In the context of automating all stages of the neuron morphology analysis, the

objective of this thesis is to automate detection, modeling and reconstruction
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Figure 1-3: The 3D stack of microscopy data containing the neuronal branches is
the input to our algorithm. The detection, modeling and reconstruction of neuronal
branches from the image volume by our proposed method.

of neuronal morphology from 3D light microscopy image stacks. Refer Fig-

ure 1-3, for illustration. The input for our proposed pipeline is the 3D stack of

microscopy images containing the neuronal data. We proposed special marked

point process model for detection and modeling of neuronal branches and fi-

nally an automated pipeline using fast marching method for the reconstruction.

The final output of our proposed pipeline is a SWC file containing all the posi-

tional, connectivity and branch hierarchic information about the neuronal tree.

The proposed methodology is applied to the delineation and reconstruction of

neuronal networks and trees from 3D confocal microscopy stacks of images.

This thesis targets three important methodological areas of biomedical im-

age analysis and computer vision:

Firstly, we propose an automatic, unsupervised object detection framework

using stochastic marked point processes incorporating both radiometric infor-

mation and high level structural constraints for extraction of the neuronal fibre

networks. The second part is devoted to the modeling of single neuron morphol-

ogy by proposing new priors for accurate identification of terminal and branch-

ing nodes. Thirdly, we focus on robust and efficient numerical techniques like

fast marching methods for reconstruction of merging of neuronal branches into
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connected minimum spanning tree representations. Such digital reconstruction

abstract out the important position and connectivity information about neuronal

trees from the microscopy data and represent it in the standard SWC format,

prevalent for archiving, exchanging, and further analysis in the neuroimaging

community. The contributions for each task is outlined below.

Detection of particular pattern or feature is a frequently encountered task in

image processing and computer vision. In case of biomedical images or remote

sensing images, the data tends to be very large images, but have sparse repar-

tition of the objects of interest. In such cases detection algorithms are desired

to have the ability to incorporate high-level spatial relation and geometric con-

straints. In the first part of the thesis, we propose a stochastic marked point

process model for unsupervised, automatic object detection. This marked point

process framework allows to simultaneously exploit low level radiometric prop-

erties of the image data as high level geometric and prior shape constraints by

means of an Gibbs energy formulation. We propose a special configuration of

marked objects and an energy function well adapted to tubular structure net-

works. These energies enforce connectedness of the neuronal tree components,

in spite of imperfect labeling, causing intensity inhomogeneity and discontinu-

ities in branches. Our model extracts networks of neuronal fibres preserving

their continuity from various 3D confocal microscopy data sets. This work has

been published in the 16th International Conference on Medical Image Com-

puting and Computer Assisted Intervention (MICCAI 2013) [17].

The second section of the thesis focuses on modeling single neuron mor-

phology. In this work, we classify the various parameters of the model and
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relate their initialization to the application data to automate parameter initializa-

tion. A study of sensitivity and robustness of model parameters identifies the

critical parameters and their data dependencies. We propose priors modeling

arborization patterns encountered in single neurons. These specialized priors

enables efficient identification of bifurcation junctions, terminal nodes and in-

termediate points on neurite branches. The explicit modeling of critical nodes

derives various characteristic parameters such as branching index, branching

angles, internodal lengths, branch curvature besides aiding in reconstruction.

We demonstrate how our model presents accurate and sophisticated semantic

modeling of complex neuronal morphology. We complete the presentation of

our model with an analysis of the errors and their sources in the neurite tracing

pipeline in the hope of better integration of neuroimaging and automated trac-

ing. This work has been published in the Pattern Recognition in Neuro-Imaging

Workshop (PRNI 2014) [18].

In the final part of the thesis, we propose an automatic pipeline for recon-

struction of 3D image data. We present a Fast Marching based geodesic curve

tracing algorithm for automatic and reliable reconstruction of neuronal mor-

phology into minimum spanning trees. The fast marching extracts the neu-

ron branches as geodesic minimal paths which iteratively reconstructs the en-

tire neuron tree. It is robust to ambiguous branch discontinuities, variability

of intensity and curvature of fibres, arbitrary cross-sections, noise and irregular

background illumination. We demonstrate the effectiveness of our method on

synthetic data modeling challenging scenarios and confocal microscopy data of

Olfactory Projection fibres from DIADEM data set. The preliminary results
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have been published in IEEE International Conference on Image Processing

(ICIP 2014) [19].

Our proposed pipeline outperforms existing neurite tracing algorithms in

accuracy and minimizes the subjective variability in reconstruction, inherent to

semi-automatic methods.

1.6 Thesis organization

The remainder of the report is organized as follows:

In Chapter 2, we begin by reviewing the background definitions and analyz-

ing the existing literature for the various approaches applicable for reconstruc-

tion of tubular structures from biomedical image data. We give special focus on

methods that have been employed for neuronal morphology analysis.

In Chapter 3, we briefly introduce the marked point processes methodology

for object detection in high content, high resolution images. Next, we present

the stochastic marked point process framework for automatic prior-shape based

detection of tubular structure networks, requiring no user-interaction.

In Chapter 4, we present a study of the sensitivity and robustness of the

parameters of the model and how to relate the parameter estimation to the ap-

plication domain. This enables us to propose new priors that help in accurate

modeling of critical nodes such as bifurcations and terminals.

In Chapter 5, we propose a methodology for efficient automatic reconstruc-

tion of neuronal morphology from 3D microscopy data stacks using fast march-

ing methods to represent neuronal branches as connected minimal spanning
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trees.

Chapter 6 concludes the report with discussion of contributions and sum-

mary of the work in the thesis. We also present a perspective on related future

research directions.
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Chapter 2

Background
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Segmentation of 3D tubular structures such as neurons are abundantly en-

countered in biomedical image analysis. Some common examples of such struc-
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tures are vascular network segmentation in angiograms, microvasculature in

retinal images, blood vessel segmentation in liver images, bronchial pathways

in chest x-rays or CT scans. Segmentation methods vary according to imaging

modality, particular biomedical requirement, application domain. For an exten-

sive review of segmentation techniques of general vessel extraction literature,

the interested reader is referred to [53]. The focus of the background review in

the rest of the chapter will be the various seminal and recent methods applied to

neuronal data.

Neurons are the structural and functional building blocks of the mammalian

nervous system. The neuronal processes, axons and dendrites arise from the

soma (cell body) and repeatedly branch to form a complex arborization pat-

tern that spans a 3D space and forms unique connection patterns. It has been

well established that variation of the neuronal morphology has significant ef-

fect on the connectivity and consequently, the activity of the nervous system.

This structure-function relation is, in turn, also related to higher order cogni-

tive functions of the organism. Hence, neuronal analysis is an important part

of drug treatment and therapy for psychiatric and neurological disorders (e.g.,

Autism), age-related neuro-degenerative diseases such as Dementia, Parkin-

son’s, Alzheimer’s. Structural changes in neurons act as precursors of onset

of pathological conditions.
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Figure 2-1: The neuronal reconstruction pipeline. Our proposed methods and contri-
butions are aimed at the areas represented in bold boxes.

2.1 Data acquisition pipeline

The traditional microscope has come a long way since its conception and can

provide a deluge of detail on neuronal morphology. Currently, sophisticated

Light Microscopy (LM) technique can reach magnifications of up to X1500 and

has a theoretical resolution limit of 200 nanometers. Electron Microscopy (EM)

provides finer details with X50,000 magnification and reaches resolutions of

0.2 nanometers. The integration of Charged Couple Device (CCD) camera to

microscope allows recording digital images that can directly be displayed on

computer screen for analysis. The development of digital microscopy brought
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many additional benefits in terms of archiving images for reuse, superior data

visualization, automated image analysis and has opened up many new avenues

of research. For example, automatic high throughput semantic analysis of high

content, large scale digital histopathology slides. Since research in neuroscience

is increasingly dependant on image analysis of massive amounts of heteroge-

neous and complex data collected by diverse imaging modalities, it is worth-

while to take a look at the data acquisition mechanism. Figure 2-1 illustrates

the neuronal reconstruction pipeline.

Data acquisition refers to a multi-step process starting from tissue staining to

extraction of fluorescent images containing structural information. The experi-

mental procedure of obtaining single neuron image is an arduous task. Figure

2-1 explains the sequence of events in the data acquisition procedure by com-

mon microscopy technology. Fixation involves embedding the tissue in a block

which preserves the tissue for long-term observation and processing. Sectioning

or cutting the 3D volume into slices parallel to imaging plane is necessary due

to diminishing depth-of-field of the high magnification objective lens needed to

resolve details at cellular levels. Next, the neurons are labeled with fluorescent

dyes so that they acquire differently colored stains to enable accurate evaluation

of the generally intricately intermingled arbors. Tissue preparation, sectioning

and staining are tedious procedures that require a very high level of precision

and accuracy on part of the technician. It is a delicate procedure which even

the most experienced neurobiologists find challenging. One point of contention

with the serial section LM or EM techniques is that the Z direction resolution is

coarser (limited by sectioning thickness) than the in plane resolution and varies
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at different slices resulting in anisotropic voxels which compromises reliability

of neurite tracing. Recent research efforts focus at improving discrimination

in depth by imaging with polarized light (principle of confocal microscopy)

and using computer controlled fine focus techniques, which significantly mini-

mizes the number of cutting artifacts generated by physical sectioning [8]. Sim-

ilarly, labeling methodologies contend with the question of whether neurons are

stained completely and whether structural changes were imposed by the method

of tissue processing for image acquisition. Modifications of optical microscopy

methods like the confocal scanning microscope or the phase contrast methods

use polarized light source that negates the need of staining the tissue.

In conclusion, high branch contrast with background and other cellular com-

ponents is desired to increase fidelity of subsequent digital reconstruction. Ho-

mogeneity in the staining of the processes is desired. Any error in sample prepa-

ration and image acquisition will get propagated to the subsequent tasks and its

impact will get magnified. [21] provides a good review of the image acquisi-

tion techniques for neuronal morphology. Automation is desired in every step

to weed out human error and prevent artifacts from appearing on digital slides.

The focus and scope of the work in this thesis is on automating the analysis of

the acquired image volumes highlighted in the schema of neuronal morphology

analysis in Figure 2-1.
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2.2 Data pre-processing

Microscopy imaging of neuronal morphology is typically affected by blurring

and Poisson noise. Image pre-processing becomes an absolute necessity to re-

move noise injected during the process of image acquisition, filtering, compres-

sion and reconstruction. The common sources of imaging artifacts are non-

uniform staining resulting in inhomogeneous contrast, background gradation

due to non-uniform illumination, tile stitching or image mosaicking to make

montages. Poor staining gives rise to noisy images; neuronal fibres having

low contrast with the background which causes weak edge response, and also

varying contrast along the length and width of the fibres. Mosaicking is the

method of stitching together and registration of multiple overlapped image sec-

tions when the region of interest is too large to be captured at the required reso-

lution all at once. Errors arising due to creating such montages are called tilling

errors. Pre-processing is necessary to avoid amplifying these irregularities and

mistakenly interpreting artefactual noise as structural components of the neu-

rons [4]. Hence, image restoration is necessary using smoothing, de-noising

and enhancement techniques.

Anisotropic diffusion methods suppress noise while preserving image fea-

tures. Morphological filtering operations like erosion are used [134] to segre-

gate objects in apparent contact, for example close lying processes like parallel

running axon fibres. Dilation is used to fill in and make solid weakly contrasted

inhomogeneously stained processes. Often in multi-scale extraction, spines ap-

pear as detached blobs and dilation is needed to make connection with parent

processes and maintain continuity.
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Mathematical de-convolution sharpens neuronal processes in image and kills

noise [103]. It also gives a final increase in overall resolution. While con-

focal microscopy images exhibit small lateral and axial resolution difference,

this poses as a major difficulty for wide-field microscopy images. Traditional

blind de-convolution which attempts to generate results without a-priori knowl-

edge of the point spread function of the microscopic setting (which is generally

not available) proves to be an impossible task estimated to take weeks on con-

temporary microscopy images. [91] provides a review of pre-processing tech-

niques. They propose a novel multi-scale wavelet based Curvelet Transform for

de-noising. A Scalar and Tensor voting with steerable filter is used for continu-

ity enhancement that is particularly good at preserving tracing context at critical

points like bifurcation nodes and inflection points.

Current high resolution microscopy technology enables generation of high

throughput, high content data. Pre-processing is also used to reduce compu-

tation cost of such data in a multi-scale framework. A rough segmentation is

initialized in low resolution images and only those regions of the image are

considered in the high resolution version for further refinement, particularly for

sparse images. In [26], the authors propose an efficient multi-scale graph track-

ing algorithm.

Recent trends in related biomedical histology analysis methods indicate that

rigorous pre-processing greatly improves and helps the subsequent automatic

segmentation. At the same time, pre-processing the data should not compro-

mise the ability to follow the morphology by distorting branching feature or

artifactually modifying network pattern by affecting process diameter, inducing
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varicosities and creating or merging discontinuous. Many algorithms have been

proposed in the literature for enhancement of filament-like structures — early

methods like multi-scale Eigen analyis of Hessian matrix [36], shape preserving

morphological filtering [126]; and more recent phase congruent Eigen decom-

position [31], Gabor wavelets [81] methods.

2.3 Computational analysis of neuron morphology

After data acquisition and pre-processing we arrive at the final and most impor-

tant step in this pipeline- extraction of the neuronal network. This task involves

segmentation of the neuronal branches followed by quantification of the branch

topology hierarchy. In [113], the authors present a method for volume partition-

ing of 3D microscopy image stacks for estimating somata, axon and dendrites

from neuron morphology. Generally, the soma takes up the biological dyes

more strongly and uniformly than the branches and presents a stronger contrast

with the background. Hence, it is comparatively easier to segment and gives

some indication about the starting points of the dendritic and axonal processes.

Traditional segmentation methods like intensity thresholding and repeated mor-

phological filtering (dilation and erosion) is generally adopted for the purpose.

Next, the segmentation of the neuronal processes, i.e., dendrites and axon, col-

lectively called neurites is considered. They present a much tougher challenge

as they are sinuous processes with variable contrast with the background.

There are multiples ways of doing structural analysis of neuronal morphol-

ogy [34]. One way is to represent digital reconstruction as a series of points
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Algorithm Local/Global Features Extent of Imaging Reference
Gradients Detected Automation modalities

Watershed, dynamic
programming G C,CP F [116]
Robust Edge Detection L,G F F [55]
Region growing
across sections G C S LS [72]
Adaptive smoothing,
watershed L C S LS [109]
Skeleton thresholding,
edge detection G C,CP S F [92]
Thresholding and
thinning L C,CP S BF [93]
Skeletonization,
thresholding G C, CP F F [99]
Skeletonization, snakes L C, CP, R S LS [106]
Tracing with
directional kernels L C, CP, R F M [5, 4, 6, 7]
Approximation of
Gaussian kernel L C,CP F F [134]
Local Hessian matrix,
Gaussian kernel L C, CP F F [129]
Active contour,
snakes L C, CP, R S, F LS [35]
Modified Active
Contours L C, CP, R F M [119, 27, 91]
Marked Point Process L,G C, CP, R F M [17, 18, 19]

Table 2.1: Automated neuronal reconstruction algorithms

along the neurites with their positions, radius, connectivity and process type

[132]. This vector style of representation (refer Figure. 1-1-SWC format) is

very concise. Neuronal processes can also be captured by volume or surface

encoding [133]. The following sections summarizes the existing algorithms for

neuronal network extraction (see Table 2.1 for summary1).

1Local/Global Gradients: L, local; G, global. Features Detected: C, centreline; CP, critical
points; R, radius. Extent of Automation: F, fully; S, semi-automatic Imaging modalities: M,
multi-modal; LS, laser scanning; F, Flourescence; BF, bright-field; C, confocal; MF, multi-
photon; 2P, two-photon
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2.3.1 Thresholding and region-growing

Thresholding and region-growing are some of the traditional segmentation meth-

ods adopted for neurite tracing in Light Microscopy images. Intensity based

thresholding [65] and adaptive thresholding [124] are among the simplest strate-

gies to segment neuronal structures. Region growing along the neuronal struc-

tures from given seed points combined with edge-detection based stopping cri-

teria has been proposed by Lu et al. in [72]. However, these methods are error

prone and in case of inhomogeneity in neuronal structures, and insufficient con-

trast with the background, fails, making user intervention inevitable.

2.3.2 Mathematical morphology and skeletonisation

The neurite centreline provides the necessary data to obtain a compact descrip-

tion of the branching topology. Hence algorithms aimed at extraction of neurite

center-line are abundant in the literature. Skeletonization methods [48, 124,

101]; medial axis extraction [4, 84]; distance transform field [131] watershed

segmentation are used to extract neurite center-lines. Generally, these methods

require an initial good segmentation which is difficult to achieve. These method

apply 3-D deconvolution to correct the images followed by adaptive 3-D skele-

tonization method, and graph-theoretic representation of nodes as branch, ter-

minal points and paths interconnecting these points. However, with increasing

size of data sets deconvolution is infeasible w.r.t 3D data sets to sharpen images

that suffer from fast motion or jiggles during capturing or restore image from

PSF distortion. These methods often result in isolated branch segments and dis-
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connected trees. As a result, they require complex constraints for keeping check

on number of connected regions. Post processing steps involving pruning and

filling strategies are needed to correct the results [72, 127, 96]. Mathematical

morphology operators like “erosion” to remove spurious branches and “dilation”

to join disconnected branches are applied.

2.3.3 Sequential tracing

One common property of all neuronal structures is that they all exhibit roughly

tubular shapes. This property is exploited to find location of tubular structures in

the data to limit the processing area using methods like Frangi vessel-ness mea-

sure [36], and Hessian or Jacobian based ridge filter analysis of critical points.

The Eigen values of the local hessian is used to approximate the normal and the

tangent direction. The shifted normal plane bounds the region for the search

of next neurite point. For Frangi vessel-ness measure the second order local

structure of an image (Hessian) is examined with the purpose of developing a

vessel enhancement filter. The vessel-ness measure is obtained on the basis of

all eigenvalues of the Hessian. Given the centerline, there exists various algo-

rithms to estimate the local radius, such as the Rayburst algorithm [123].

In sequential tracing local models of the neurite are sequentially fit to image

data starting from a detected set of seed points. Commonly, multi-scale Eigen

analysis [36], in combination with gradient information [56] or intensity ridge

traversal [11] are used to detect seeds on tubule centerlines. These filters find

voxels maximizing a vesselness measure by collecting responses over a range

of filter scales. However, a major drawback of this method is the detection fails
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at the junctions and branching points where the structures deviate significantly

from the tubular shape. Moreover, the performance is sensitive to the scale

of the edge detectors and fails for branches that are significantly thicker. These

methods are susceptible to discontinuities (gaps and holes) of the foreground and

produce fragmented traces that require additional post-processing procedures

for curve completion.

2.3.4 Min cost path

This class of algorithms use a variety of energy minimizing functions to fit local

image data and curve regularity. The optimal neuronal trees are determined by

a Djikstra-like minimal cumulative cost strategy. Some of the popular choices

are parametric deformable active contours or snakes, level-sets [88], deformable

cylinders, mathematical neurite kernels; fitted between critical points based on

the intensity values in the data and some prior information (regularization term).

Automatic neurite tracing algorithms emulate the strategies adopted by a human

operator. Manual tracing generally starts from given critical points like terminal

points or the cell body and traces out the neurite. Kernels or templates corre-

sponding to neurite segments are iteratively tested at different orientations at

the end of the already detected neurite process along the lengths of the neu-

rons until end points are detected. The major advantage of this approach is that

computation is directed only in the immediate vicinity of the extending neu-

rite, thus greatly reducing the overall computational load in CPU and memory

[5, 6, 7, 134]. This makes them more attractive choices for scaling to larger data

sets.
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The seed points, for example end points, branch points and inflection or

ridge points, can be user supplied or automatically detected using machine learn-

ing techniques like used in [100]. Some of the recent efforts have focused on

detection of terminal nodes in volumetric neuronal data to initialize automatic

tracing methods [68]. The extent of automation can be determined by how the

seed points are generated. While traditional methods used expert supplied seed

points, full automation of seed point selection is also possible [27]. The quality

of the seed points is, however, of utmost importance. Experience shows that full

automation cannot match the quality of user supplied seed points. Seed point

selection can be tricky and depends on the experience level of the user. Hence,

it is important to strike a balance between automation and the quality of seed

points. This choice affects the robustness of the solution verses scalability to

full automation.

Of the above enumerated categories, the first two classes of algorithms were

mainly successful with early, low-resolution, 2D microscopy data. In view of

the growing size of data sets, it is predicted that stochastic data exploration

strategies rather than deterministic ones, combining both local and global image

evidence, will gain popularity and relevance [79]. Methods on recent complex

and large neuronal data sets focus on various statistical machine learning ap-

proaches such as multi-layer neural networks with receptive fields [29]. Lately,

the neuron segmentation problem is increasingly being viewed as a graph theo-

retic representation problem ensuring global connectivity [85]. In [115], too the

authors present a stochastic Ant colony Optimization strategy to sample con-

nections between a set of detected nodes and generate the optimal Minimum
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Spanning Tree. Another novel and revolutionary effort at large scale neuron re-

construction is the Eyewire project using crowd sourcing [3]. A team at MIT

labs developed a game Eye-wire which challenges the players to map 3D neu-

ronal circuits in the retina.

Recent efforts at neuron reconstruction is focused not only on segmentation

of neuronal branches but also extracting analytical parameters for neuron shape

quantification. The neuronal structure is the primary tool for enumerating neu-

ron types. The most obvious criterion of choice for classification of neurons is

their functionality. But very little is known about the nervous system in general.

The structure of neurons have been found to have an intimate relation with its

functions, and further other characteristics like electrophysiological responses

and genetic expressions have also been known to be influenced by neuron struc-

ture [112]. [14, 104, 87, 86, 16, 82] have proposed methods to quantify neuron

morphology in order to differentiate neurons in the shape space.

2.4 Global versus local algorithms

The various neurite tracing methods can broadly be classified as local tracing

and global segmentation methods. The first category refers to algorithms that

explore an image in the vicinity of relevant structures instead of processing the

entire image. The basic idea of this approach is to determine whether the next

point is part of the neuronal process. Region growing [72], active contour based

propagation [74, 27]; cost based path fitting between start and end points [13] are

examples of “local explorative” algorithms. Local methods are computationally
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Global algorithms

• Neuronal Reconstruction

• Computationally intensive;
high memory requirements

• Results in less cases of dis-
connected components

• Exploits more image evi-
dence using optimization like
MCMC, ACO etc.

Local algorithms

• Neurite Tracing

• Less intensive computation;
dependence on seeds

• Can interpolate only through
small intensity gaps

• Localized search; tracing er-
rors result in large topologi-
cal perturbations

Table 2.2: Contrasting global and local neuronal reconstruction methods.

inexpensive in both CPU and memory. The other advantages are that these local

methods are faster and are more attractive for parallelization. Local algorithms

can successfully interpolate through small intensity gaps along branch lengths

but larger discontinuities result in disconnected components. The disadvantage

with local tracing are small errors get propagated and magnified, resulting in

large topological perturbations of the neuron tree morphology.

Global algorithms are typically computationally expensive as they consider

the evidence from the whole image but only a small fraction of the data has

the relevant neuronal structures. Skeletonization, filling and pruning [92, 99]

are examples of global segmentation schemes. Global methods are, however,

better at avoiding disconnected components by sampling evidence from the en-

tire data. Processing the entire data allows to intelligently join the close lying

disconnected components. But this makes them slower and more computation-

ally intensive than the local methods. In order to handle this computational
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Figure 2-2: Flow of neurite tracing algorithms.

challenge, in global methods, segmentations are initialized roughly at low mag-

nification data and then further optimized in a multi-scale framework.

There is a trend of transition from manual to semi-automatic approaches

[72, 65] over the past decade. A comprehensive survey of all issues related to

automatic neuronal reconstruction can be found in the following papers [79, 34,

107]. The papers present a survey of the existing algorithms and tools and lists

their merits and demerits.
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2.5 Validation tools and metric

Validation methods and metrics for automated reconstruction present a point of

contention in the field. The most common method for validation of automated

reconstruction is to compare with Gold Standard reconstructions. Mostly, man-

ual reconstruction by the experts are accepted as the Gold Standard. Sometimes,

neuronal morphology databases comes with synthetic data. In such cases the the

reference reconstruction used to generate the synthetic data is taken as the Gold

Standard. However with real data, the Gold Standard manual reconstruction is

treated as the ground truth. Hence, if the manual reconstruction contains errors,

even when the automated algorithm performs better, it is not reflected in a com-

parison against the Gold Standard. Once the Gold Standard is fixed, there are

multiple ways to compare the automated reconstructions.

Traditionally, scoring the reconstruction is done by checking whether it lies

within the scope of inter and intra operator variability [80, 37]. Some studies

score the automatic reconstructions according to percentage of deviation from

manual reconstruction called the constrained Tree Edit Distance (TED) [43, 50].

The standard morphometrics for axonic and dendritic tree quantification are to-

tal length, branch number, branching pattern, mean diameter, centre-line de-

viation. For example, the DIADEM (short for Digital Reconstruction of Ax-

onal and Dendritic Morphology) Challenge [42] that brought together the most

challenging neuronal morphology reconstruction data from Confocal, Bright-

field and Fluorescence microscopy also established its own metric. The metric

scored generated reconstructions against gold standard manual reconstruction

on the basis of location of critical points like inflection nodes, terminal nodes
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and branch nodes; branching hierarchy and the inter-nodal distance [41]. It

calculated the precision and recall of both centreline position and connectiv-

ity. Other tools focus, such as NetMets focus on comparing distances between

generic network graphs [77, 78]. It compares the spatial geometry and con-

nectivity of two interconnected graphs, like those produced using neuron and

vascular/microvascular segmentation. Additionally, NetMets provides tools for

visualizing differences between graphs, including color maps highlighting dif-

ferences between geometric features and edge mapping to indicate differences

in connectivity. Path2path [15] is another hierarchical path analysis tool for

neuron matching for classification based on shape quantification.

2.6 Discussion

The study of neuronal structure and neural circuits is still at a nascent state. It

is expected to open up many new research directions in the future [69]. 4D

images, i.e., 3D time lapse images of the neuronal morphology are relevant for

studying development, plasticity degeneration and regeneration of the nervous

system. Development of super-resolution optical microscopy will enable trac-

ing sub-cellular structures of various proteins and organelles at synaptic sites.

While deterministic structural analysis methods are currently focused at study-

ing axonic projections in relatively small area, the ultimate goal is to study the

entire neural circuity. That would require reconstruction at sub-cellular scales

Electron Microscopy data of synapses and eventually exploring at extra-cellular

level the connectomic pattern of the nervous system.
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Chapter 3

Detection of 3D Tubular Structure

Networks
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Tubular structures are frequently encountered in biomedical images. The

centerlines of these tubules provide an accurate representation of the topology

of the structures. We introduce a stochastic Marked Point Process framework

for fully automatic extraction of tubular structures requiring no user interaction

or seed points for initialization. Our Marked Point Process model enables un-

supervised network extraction by fitting a configuration of objects with globally

optimal associated energy to the centreline of the arbors. For this purpose, we

propose a special configuration of marked objects and an energy function well

adapted for detection of 3D tubular branches. The optimization of the energy

function is achieved by a stochastic, discrete-time multiple birth and death dy-

namics. Our method finds the centerline, local width and orientation of neuronal

arbors. The proposed model is tested on 3D light microscopy images from the

DIADEM data set with promising results.

3.1 Overview

The rapidly evolving field of imaging generate huge volume of rich and hetero-

geneous data. Manual analysis of such data is prohibitively expensive in terms
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of expert man-hours required besides presenting considerable inter-operator vari-

ability. Tubular structures abound in biomedical images. Vasculature networks

in retina and tumors, coronary arterial angiograms, bronchial trees are some

commonly encountered examples. In our work, we focus our attention on neu-

ronal morphology imaged by various 3D microscopy techniques. At present,

high resolution, high content 3D image data is becoming more and more preva-

lent. Hence, we focus on developing a fully automatic, stochastic rather than

deterministic data exploration strategy, combining both local and global image

evidence.

3.1.1 Tubular structure detection

Neurite tracing methods connect paths of maximum neuriteness voxels locally

between sets of seed points to extract the global neurite structure. A common

drawback of existing methods is their dependence on seed points [114]. Often,

manual intervention is required to select the optimal seed points. Unavailabil-

ity of seed points can even lead to entire branches going undetected. Not only

for neurons, seed points are a relevant concern for all kinds of tubular structure

extraction scenarios [53]. This topic has been extensively researched for over

two decades. In the literature it is given various names such as tube detection

filters, vessel detection filters, medialness filters etc. Over the years the applica-

tion data has grown in volume and dimension (2D to 3D) and complexity. Most

of these methods perform a shape analysis for each image voxel for a medial-

ness or tube-likeliness measure. Ideally, this is maximum when computed at the

correct local scale at the centreline of the tubule.
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Figure 3-1: Variation of intensity profiles across the cross-sectional scan lines.

Commonly, multi-scale Eigen analysis [36], in combination with gradient

information [56] or intensity ridge traversal [11] are used to detect seeds on

tubule centerlines. There are mainly two categories of approaches the central

medialness filters and offset medialness filters. The former focuses on image

information at central voxel while the latter takes into account information away

from the center voxel at the tube radial edges too. The former rely on Eigen

analysis of Hessian matrix for identifying typical structural properties such as

large variance in two directions along tube cross-sections and low variance in
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Figure 3-2: Non-maxima suppression of vesselness measure versus result by our pro-
posed method.

the tube tangent direction. In Gaussian scale space tubular structures present

height ridges when scales are adapted to tube dimensions. The offset medialness

filter in addition to second order derivatives (Hessian) use first order derivatives

(gradient vectors) at tube radii for more robust detection of tubular structures.

These filters find voxels maximizing a vesselness measure by collecting re-

sponses over a range of filter scales. They are computationally intensive as

multiple scales and orientations of the filters are convolved with the image data

at every voxel. With increasing volume of data and considering 3D orientations

of neurites, deterministic filter response maximization is an infeasible option,

considering the huge solution space that is required to be explored. A common

drawback of Hessian-based filters, such as the Frangi vesselness filters, is that

they fail at critical junctions and bifurcations where the neuronal morphology

deviates significantly from expected tubular cross-sections. They are also sen-

sitive to presence of adjacent structures. Scale-orientation space non-maxima

suppression fails to generate a connected topological centreline of the neurite

branches. It is very difficult to explicitly model the variety of artifacts generated

due to inhomogeneity in branch labeling and noise injection during imaging.
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Figure 3-1 demonstrates the variation of intensity profiles encountered in branch

cross-sections. The left images show scan lines in yellow across branch cross-

sections. The right images show the corresponding intensity profiles across the

scan lines. We see that the intensity ridges often do not correspond to geomet-

ric centre lines in case of irregularly stained neurons as is expected in the ideal

situation.

Recently various supervised machine learning techniques modeling the cen-

treline detection problem as a classification task have been proposed in the

literature [44]. These methods learn binary classifiers for centreline and non-

centreline pixels. Although these methods perform better than classification

based methods for direct segmentation of tubular objects, they are not strongly

discriminative about pixels close to centerlines. Hence, automatic seed selection

by these techniques generate sub-optimal seeds. Moreover, their dependence on

availability and quality of learning data, make them an unattractive choice. Fig-

ure 3-2 demonstrates the superiority of our proposed method. The middle sec-

tion is a maximum intensity projection of the Olfactory Projection Fibre (OP7),

the left image is the result of non-maxima suppression of vesselness measure,

and the right image is the result by our proposed method. We solve this problem

by reformulating neuronal morphology as a special configuration of an object

process. It offers the advantage of modeling a random set of points describing

a spatial distribution of data by means of geometric shape and object interac-

tion priors. Thus the neuronal structure is described by a optimal configuration

of the marked point process objects fitted to the tubular branches. The centre-

line and the corresponding local scale and orientation information can be easily
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Figure 3-3: The detected network with our proposed MPP configurations on OPF.

obtained in an automatic, unsupervised manner requiring no user interaction.

Refer Figure 3-3 for overview of our method. It shows the minimum intensity

projection of intensity inverted (for ease of visualisation) Olfactory Projection

Fibers (OPF) data obtained by confocal microscopy. The extracted network with

the proposed model visualised on a projection of the OPF data. We restrict over-

lap of object to have a sparse density on the branches and yet get a sense of the

continuity of the neurites.

3.1.2 Bayesian learning and MCMC

Markov Chain Monte Carlo (MCMC) simulations are widely used for approxi-

mate counting problems, Bayesian inference and as a means for estimating very

high-dimensional integrals. As such MCMC has found a wide variety of appli-

cations in computational biology and biomedical analysis. For high resolution,

high content microscopy data such as neuronal morphology data, MCMC is

a computationally expensive nondeterministic iterative technique for sampling

from a probability distribution that cannot easily be sampled from directly. In-
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stead, a Markov Chain is constructed that has a stationary distribution equal

to the desired distribution. We then sample from the Markov Chain, and treat

the results as samples from our desired distribution. At each iteration a transi-

tion is proposed to move the Markov Chain from state Si to some state Si+1,

normally by making small alterations to Si. The probability of applying this

proposed move is calculated by a transition kernel constructed in such a way

that the stationary distribution of the Markov Chain is the desired distribution.

These methods typically allow the user to define priors modeling expected struc-

tural and shape properties besides using radiometric properties from image data.

The probability for advancing the chain to state is based on how well the new

state fits with the prior knowledge — what properties the target configuration

is expected to have—and the likelihood of the new state considering the actual

data available.

3.1.3 3D marked point process model

We develop an efficient Marked Point Process (MPP) framework for extraction

of neuronal structures from 3D data without greatly increasing the computa-

tional complexity of sampling and estimation. Firstly, spheres are chosen as

MPP objects, in particular because it gives one dimensional object space but al-

lows to simultaneously extract center line, size and local orientation of branches.

Secondly, to find the Maximum A Posteriori (MAP) estimate of the optimal con-

figuration, we sample from the object configuration space using a Multiple Birth

and Death (MBAD) dynamics embedded in a Simulated Annealing scheme [32].

The MBAD dynamics reduces computational cost over traditional Reversible
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Jump Monte Carlo Markov Chain samplers by avoiding proposal kernel com-

putations and leads to faster convergence.

In the Marked Point Process (MPP) literature, previous works on network

extraction, such as coronary network extraction from angiograms [59],[111] and

road network extraction from satellite data [60] in remote sensing, used line seg-

ments as objects. More complex polyline objects were employed in [60] with

improved accuracy. Line segments are defined by the position of their mid-

points, length and orientation parameters. On 3D data, however, considering

line segments or cylinders to approximate the tubular structure would lead to

four or five parameters (marks) respectively to define each object, thus increas-

ing the object space dimension. Hence, a Point Process model was proposed

for efficient road network extraction from 2D aerial and satellite images [23].

Neurite dimensions, however, are found to vary significantly from root to the

terminals necessitating a variable object model, making a fixed dimension ob-

ject space impossible.

Hence, we adopt a stochastic framework that enables a flexible object model

along with incorporation of prior shape and object interaction information which

is partly introduced in [17]. We introduce special configurations of MPP objects

corresponding to neuronal morphology and adapt an energy function designed

for extraction of 3D tubular structure patterns. then we perform a search in a

high dimensional solution space. We develop an efficient Marked Point Process

(MPP) framework for extraction of neuronal structures from 3D data without

greatly increasing the computational complexity of sampling and estimation.

Firstly, spheres are chosen as MPP objects, in particular because it gives one
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dimensional object space but allows to simultaneously extract center line, size

and local orientation of branches. Secondly, to find the Maximum A Posteriori

(MAP) estimate of the optimal configuration, we sample from the object config-

uration space using a Multiple Birth and Death (MBAD) dynamics embedded in

a Simulated Annealing scheme [32]. The conventional Reversible Jump Markov

Chain Monte Carlo (RJMCMC) sampler allows perturbation of only a few ob-

jects in the current configuration and hence is slow to converge. In contrast, in

MBAD multiple random objects are proposed and removed independently and

simultaneously in each iteration, which greatly reduces computational cost and

speeds up convergence. Recently, Graph Cut optimization schemes Multiple

Birth and Cut (MBC) were proposed for MPPs [39] as an alternative for MBAD

optimization with fewer parameters and more stable convergence. Although

MBC has several advantages over MBAD, it is very difficult to set up our en-

ergy function for a graph cut optimization. The class of energy functions MBC

can deal with are ones satisfying the sub modularity constraint of pairwise inter-

action terms [54]. However, in our proposed energy function for neurite tracing,

the multi-element interaction term is very important for accurate detection of

critical nodes.

3.2 Marked point process: notations, definitions

The Point Process models were first introduced in [12] to exploit random fields

whose realizations are configurations of random points describing a spatial dis-

tribution of data. Under this view, images are considered as configurations of a
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Gibbs field. The implicit assumption behind the probabilistic approach in im-

age analysis is that, for a given problem, there exists a Gibbs field such that its

ground states represent regularized solutions of the problem. [117] and [30],

are good resources for complete details of Marked Point Processes and their

applications. These methods are particularly useful for addressing spatial rela-

tion and configuration modeling purposes for high dimensional, high resolution

image data. These methods have been used for various applications such as

counting in flamingo colony [38], tree identification [58] from aerial and satel-

lite images, crowd counting [40], vasculature tree extraction [61],[111] etc.

3.2.1 From point to parametric marked point process

Figure 3-4: Point process and marked point process.

In Figure 3-4, we see a Point Process(PP) modeling spatial distribution of

data — a configuration of points on [0,X ]× [0,Y ] and a Marked Point Process

(MPP) modeling spatial distribution of data and geometry — a configuration of

circles with centres on [0,X ]× [0,Y ] and radii from M = [rmin,rmax] as marks.

We consider a point process X existing in K = [0,Xmax]× [0,Ymax]× [0,Zmax] ,

where K is a bounded, connected subset of V3, the image domain. Marked point

process (MPP) is an augmented point process, where each point xi is associated
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with additional parameters (marks) mi to define an object ωi = (xi,mi). Here,

xi ∈ K and mi ∈ M and the marked point process Y is defined on K×M. A

countable, unordered set of points in Y is called a configuration. The configu-

ration space of the objects is given by:

Ω = ∪∞
n=0Ωn, (3.1)

where Ω0 is the empty set, each Ωn,n∈N is a configuration containing n objects

and γn ∈Ωn,γn = {ω1, . . . ,ωn}. Note that n can be arbitrary, and in the following

sections of the paper the elements of configuration γ ∈ Ω (with an arbitrary

number of elements) will be denoted as {ωi}, where i = 1 . . .n.

3.2.2 Gibb’s distribution and energy of configuration

The Marked Point Processes are defined by their probability density w.r.t. the

reference Poisson process. Given a real, bounded below function U(γ) in Ω, the

Gibbs distribution µβ in terms of the density p(γ) =
dµβ

dλ
(γ) w.r.t. Lebesgue-

Poisson measure λ on Ω is defined as:

p(γ) =
z|γ|

Zβ

exp[−βU(γ)]. (3.2)

Here, γ represents the configuration of objects, z,β > 0 and Zβ is a normalizing

factor:

Zβ =
∫

γ∈Ω

z|γ| exp [−βU(γ)]dλ (γ). (3.3)
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These models are defined on huge configuration spaces over unknown number

of objects. The configuration space is then the union of the spaces with a fixed

number of objects. Markov Chain Monte Carlo (MCMC) simulations are widely

used as a means for estimating very high-dimensional integrals. The principle

is to define a Markov Chain converging to a target distribution. By including

a simulated annealing scheme, the chain converges to the Maximum A Poste-

riori, which is the configuration which maximizes the target distribution. To

define the Markov chain, an iterative process is computed. At each step, a new

configuration is proposed following the so-called proposal density. This new

configuration is accepted with a probability depending on an acceptance ratio

which involves the target and the proposal distributions.

In the Gibbs energy model, the optimum object configuration γ̂ corresponds

to the minimum global energy, where γ represents the configuration of objects:

γ̂ = argmax
γ

p(γ) = argmin
γ

U(γ). (3.4)

The problem of object extraction in Bayesian inference is formulated as an in-

verse problem. It aims to find some model parameters γ from the observed data

D. It is solved as an energy U(γ) optimization problem in the space of model

parameters. Bayesian inference framework typically involves a likelihood term

or data energy response to fit the model to the data and a regularization prior

to embed expected structural constraints. The parameters are finally estimated

using a Maximum A Posteriori (MAP) estimate:

U(γ) = wdUd(γ)+Up(γ), (3.5)
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where Ud represents the data energy, Up is the object interaction prior energy

wd is the relative weight between the data and the prior energies. We seek to

minimize the global energy U(γ). To find the minimizer γ̂ means to find the

number n of objects in the required configuration and to find positions of all n

objects in the configuration γ̂ .

To fully appreciate the power of the MPP framework, we should view it in

comparison to the more popularly used Markov Random Fields (MRF) mod-

els. The MRF is a more general framework — they could be pixel-wise ones,

or point configuration models, and can be applied to various image process-

ing problems. The crucial idea behind the MRF modeling is that there exist a

Markov random field such that the desired image will be a ground state of this

field.

Markov point process models is a class of MRF models with a configuration

space, where configurations are unordered sets of points/objects with a corre-

sponding probability distribution on this configuration space. In our approach

it is a Gibbs field. This class of models can give a more qualitative result for a

certain image processing problems such as object detection, counting.

The key difference is that for objects model with MRF and graph optimiza-

tion, the number of objects should be known in advance and is fixed for ever.

Whereas in the case of MPP, the number of objects can vary at each iteration

of the optimization done via RJMCMC (such as Metropolis-Hasting-Green dy-

namics) and one need not know the total number of objects in advance.
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3.3 Energy model for 3D neuronal networks

Our aim is to extract the neuronal branches by generating a configuration of

objects fitted to the points of maximum medialness measure on the image vol-

ume. For this purpose, we adopt spheres as objects ωi = (xi,ri), xi ∈ V3, ri ∈

[rmin,rmax] and ωi(xi,ri) = (yi : |xi− yi|≤ ri) where yi are voxels in the image

domain V3. The stochastic optimization and random sampling strategy of the

object configuration space, which also defines our filter space, extracts an opti-

mal configuration of objects whose radii correspond to the scales of the filters

maximizing the responses at their center voxels in the image data. In the follow-

ing section we describe each of the energy components in detail.

3.3.1 Data Energy

Figure 3-5: Illustration of adopted neurite-ness function.
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Figure 3-6: The red circles are the cuts of our spherical objects on 1 slice of data.

The total data energy is a sum of data energy responses of individual objects:

Ud(γ) = ∑
ωiεγ

Ud(ωi). (3.6)

Our data energy response is based on the tubularity filter proposed in [98]. The

Hessian is a second order partial derivative of image data containing local struc-

tural information. Its principal components determine the tangent direction and

normal plane of the local neurite structures. The scale of the Hessian σH is

uniformly sampled from the radius range [rmin,rmax]. The medialness measure

M(ωi) is obtained by taking an integral of the image gradient at scale σG along

the circumference of the cut of the spherical object on the normal plane defined

by V 1 and V 2:

M(ωi) = |
π

2

∫ 2π

θ=0
∇I(σG)(xi + riVθ )dθ |. (3.7)

Here, Vθ = cos(θ)V1 + sin(θ)V2 is a rotating phasor in the normal plane sam-

pling gradient information at radial distance r from the center xi = [x,y,z]T ,xi ∈

V3 of the object. The medialness measure varies greatly for thin or weakly con-

trasted neurite branches, a common occurrence in case of microscopy images
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due to injection of noise and non-homogeneous staining of the neurons. Thus, a

user defined optimal global threshold to reject structured noise and background

artifacts is difficult to obtain. So, to discriminate between “good” and “bad”

objects an adaptive thresholding of the medialness response is performed based

on the gradient response at the tube’s center Mc(ωi) = |∇I(σH)(xi)|. The data

energy term is then defined as follows:

Ud(ωi) =


−(M(ωi)−Mc(ωi)), ifM(ωi)> Mc(ωi)

0,otherwise.
(3.8)

Figure 3-5 shows the adopted neurite-ness function. The eigen analysis at the

scale of object radii determines the orientation of branch and the perpendicular

normal plane on which we average the edge response. In Figure 3-6, the red

circles are the cuts of our spherical objects on 1 slice of data. High negative en-

ergies indicate “good” objects (e.g., objects B,C,D), i.e., objects situated on the

branch centreline and the same size as the local branch width. “Bad” objects, for

example, on the background (object A) or not centered correctly on the branch

(object E) have low probabilities of survival in the configuration during the en-

ergy minimization scheme.

The prior Up(γ) in the energy function (Equation 3.5) consists of two terms

Ui(γ) and Uc(γ).
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3.3.2 Prior I

This term is a pair-wise interaction potential for objects in each other’s zone of

influence:

Ui(γ) = ∑
ωi,ω j∈γ;
ωi∼ω j

Ui(ωi,ω j), (3.9)

where the operation ∼ is defined as a neighborhood relation:

ωi ∼ ω j = |ωi,ω j ∈ γ : |xi− x j|< tD|, (3.10)

and D is distance between centers of objects ωi and ω j, and t ∈ N. It avoids

crowding together of spheres along the neuronal processes and favors continu-

ity of network by merging of close lying disconnected fragments, a common

occurrence in microscopy data due to inhomogeneity in branch intensity and

poor contrast with background. Around every object exists an immediate zone

of repulsion followed by a concentric zone of attraction. Two energy potentials

are defined: U+ is repulsive in nature to penalize objects lying too close to each

other, and U− is attractive in nature to favor objects in reasonable distances of

each other.

Ui(ωi,ω j) =


U+, if d < dr

U−, if dr ≤ d ≤ da

0, if d > da.

(3.11)

Here, d is the Euclidean distance between the centers of the spheres; dr and

da (dr < da) are respectively the repulsive and attractive distances, dr,da are

multiples of ri+ r j. By varying dr and da, density of spheres along the neuronal
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branches can be controlled.

3.3.3 Prior II

We propose a second prior — Uc(γ), which is a multi-object interaction poten-

tial, incorporating constraints on the connection among objects:

Uc(γ) = ∑
ωi∈γ

Uc(ωi). (3.12)

Depending on the number of objects k(ωi) = |ω j ∈ γ : dr < d(ωi,ω j) < da|, in

the neighborhood, the prior term can also be used to determine branching points

and termination points along neuronal processes.

Uc(ωi) =



E1, if k(ωi) = 0

−E1, if k(ωi) = 1

−E2, if k(ωi) = 2,3

−E2, if k(ωi) = 4

E1, if k(ωi)> 4.

(3.13)

This association of favorable energy potentials E1 and E2 with particular

local sub-configurations encourage accurate detection of critical nodes. At the

same time, it discourages isolated objects in the configuration, which are likely

to correspond to cell nuclei or other such background structures.
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Algorithm 1 Multiple Birth and Death
Initialization
Discrete time-step δ = δ0; inverse temperature β = β0; Poisson mean z0;
Parameters of energy function and the empty start configuration.
Now, alternate between birth and death step until stop condition is met:
Birth
(a) Generate a configuration of spheres γ ∈ Ω, from the Lebesgue-Poisson
distribution with intensity z = δ z0 for centers, with independent radii uni-
formly distributed on [rmin,rmax]. A hard core repulsion δε is added with ε

equal to one pixel.
(b) γ

′ ∪ γ
′′
: Add the new set of objects γ

′′
to the “surviving” ones γ

′ ⊂ γ to get
current configuration γ .
Death
(a) Sort the objects of the current configuration according to their data energy
Ud(ωi), for the purpose of accelerating computation;
(b) Each object ωi in the configuration γ , is removed with probability
p(ωi,γ) =

δαβ (ωi,γ)

1+δαβ (ωi,γ)
;

Termination
Terminate if all and only objects added in the birth step of current iteration are
removed. Else, update γ , decrease δ , 1

β
according to a geometric annealing

schedule and go to the birth step.

3.4 Optimization

The main idea of the proposed approach is to sample special configurations

consisting of spherical objects and fit them to the microscopy data stacks to vox-

els of maximum neuriteness measures. These configurations are projected onto

the image volume. The configurations are optimized by measuring the similar-

ity between the projected model of the configuration and the neuronal data. A

Gibbs energy is defined on the configuration space. The complexity of opti-

mization of the global energy depends directly on the size of the sampling space

of the objects, which we limit by the adoption of spherical objects, with a 1-

56



dimensional parameter space. The optimum global energy is defined over the

space of union of all possible configurations, considering an unknown a-priori

number of objects. To obtain the optimal configuration of the objects on the

image data, we use MAP estimation (Equation 3.4). We sample from the prob-

ability distribution µβ using a Markov chain of the discrete-time Multiple Birth

and Death dynamics defined on Ω and apply a Simulated Annealing scheme. At

every iteration, a transition is considered from current configuration γ to γ
′ ∪ γ

′′

where γ
′ ⊂ γ and γ

′′
is any new configuration. The corresponding transition

probability is given by:

P(γ → γ
′
∪ γ

′′
)

∼ (zδ )|γ
′′ |

∏
ωi∈γ�γ

′

αβ (ωi,γ)δ

1 + αβ (ωi,γ)δ
∏

ωi∈γ
′

1
1 + αβ (ωi,γ)δ

,

(3.14)

where αβ (ωi,γ) = exp(−β (U(γ \ωi)−U(γ))). The convergence properties of

the Markov Chain to the global minimum under a decreasing scheme of parame-

ters δ and 1
β

are proved in [32]. The probability of death of an object depends on

both the temperature and its relative energy in the sub-configuration; whereas,

birth of object is independent of both energy and temperature and is spatially ho-

mogenous. In this way, the iterative process finds a configuration γ̂ minimizing

the global energy Eq. 3.5.
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Figure 3-7: Detected networks with our proposed MPP configurations on CCF and
NL1.

3.5 Results

3.5.1 Pre-processing

Our method is not sensitive to the initialization of the configuration and con-

verges to the global minimum from any random initialization. But the structures

of interest take up only a small fraction of the total volume of the data. In order

to speed up convergence to the optimum configuration, the birth of the objects

are restricted to a region of interest defined by the dilation of the maximum

intensity projection of the original data stack. In case of Neocortical Layer 1
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Axons obtained by 2-photon Laser Scanning microscopy and the Olfactory Pro-

jection Fibers data obtained by confocal microscopy, the neurite branches have

good contrast with the background. But for the Cerebellar Climbing Fibers

obtained by Transmitted Light Brightfield microscopy, a regular maximum in-

tensity projection of the 3D stack presents not only the neurites of interest but

also some structures having a contrast with the background. Moreover, as is

typical of Brightfield images, for most of the volume the neurites have a fuzzy,

out-of-focus appearance. Hence, we perform a color segmentation to weed out

the background structures followed by a standard deviation projection to obtain

a layered depth map to guide the birth of objects in the more relevant sections

of the image data.

3.5.2 Evaluation

We test the performance of our proposed model on 3D light microscopy im-

age stacks from the DIADEM Challenge database [21]. Refer Figure 3-7. The

left top image shows the minimum intensity projection of Cerebellar Climb-

ing Fibers (CCF) obtained by Transmitted Light Brightfield microscopy. The

top right shows the neuronal network extraction with the proposed model visu-

alised on a projection of the least noisiest channel of the CCF data. The bottom

row left maximum intensity projection of Neocortical Layer 1 Axons (NL1) ob-

tained by 2-photon Laser Scanning microscopy. The bottom right image shows

the neuronal network extraction with the proposed model on the projection of

the NL1 data. These results are obtained with a high density of objects, allowing
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overlap to fully reconstruct the fuzzy and blurred segments of the neurites. Our

unoptimized Matlab implementation takes 57 mins, 3 hrs 29 mins and 1 hr 33

mins to converge on NL1, OPF and CCF datasets respectively on Intel Core i7

processor, 3.4 GHz with 8GB RAM.

The parameters of the priors are set to: U+= 10,U−=−2, E1 = 1.5 and E2 =

2.0. The sampling parameters are set experimentally as β0 = 1 and δ0 to approx-

imately three to five times the number of objects expected in the final configu-

ration. The objects are sampled uniformly from the radius ranges [1,10], [1,3]

and [1,25] for OPF, NL1 and CCF data sets respectively. The deviation of the

extracted points set (P) using our proposed model from gold standard manually

delineated centerlines (G) is compared in Table. 3.1 in the following way :

max(P,G) = max( min
p∈P,g∈G

( f (p,g))), (3.15)

avg(P,G) = avg( min
p∈P,g∈G

( f (p,g))), (3.16)

errr(P,G) = avg(|rp− rg|: min
p∈P,g∈G

( f (p,g))), (3.17)

maxerrr(P,G) = max(|rp− rg|: min
p∈P,g∈G

( f (p,g))), (3.18)

where f (p,g) represents Euclidean distance of the concerned points and rp and

rg are radius at point p and g respectively. The units of reporting error are

anisotropic image voxels. The errors are higher along the z-axis due to the dif-

ferential resolution of original data. * indicates ground truth radius not available.

Thus, our method produces an automatic and reliable extraction of neuronal

morphology. It is robust to small branch discontinuities, intensity variations

due to inhomogeneous labeling, noise and background interference. More than
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Dataset Resolution Centreline deviation Radius
avg(P,G) max(P,G) % under

2 voxel error
errr(P,G) maxerrr(P,G)

OP1 512x512x60 0.9504 3.00 96.90% 1.07 3.64
OP4 512x512x67 1.02 3.72 92.88% 1.18 3.24
OP5 512x512x76 1.39 3.53 84.24% 0.99 1.98
OP6 512x512x101 1.34 3.62 88.28% 0.43 1.22
OP7 512x512x71 1.08 3.13 94.78% 0.61 1.72
OP8 512x512x85 1.41 3.28 95.52% 0.78 1.18

CCF1 6120x4343x34 2.67 6.5869 66.23% 1.7656 9
NC01 512x512x60 1.1398 2.0119 79.12% * *

Table 3.1: Evaluation of our proposed method against gold standard manual
extraction.

accuracy of centreline detection, our emphasis is on obtaining a connected ex-

traction of the neuronal branches. In the subsequent chapters of this thesis, we

will demonstrate how this presents an accurate topological representation of the

neuronal structures from the 3D data volume and aids in subsequent analysis.

We also perform comparison against state-of-the-art methods in Figure 3-

8. We select representative methods from several categories of algorithms - the

oriented optimal flux [63] an extension of hand crafted filters combining lo-

cal Hessian matrix analysis and gradient information; a skeletonization based

method [128]; and a learning based method that models centreline detection as

a classification task [108]. We compute the deviation for the centreline points

given by given by each of the methods against the gold standard manual recon-

struction. Figure 3-8 shows the plot of the mean deviation and one standard

deviation from the mean for all the methods. We see that the performance of

MPP is superior compared to the other methods showing the least mean for eu-

clidean deviation and also a small standard deviation overall.
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Figure 3-8: Comparison with existing algorithms: euclidean deviation measured in
pixels. *GS: Gold Standard.

3.6 Discussion

To conclude, in this chapter we present a MPP model for unsupervised network

extraction that is fully automatic and requires neither seed points nor manual

intervention. The proposed method significantly improves network detection by

reconstructing blurred and fuzzy segments of networks due to connectivity pri-

ors of the energy function. The stochastic optimization to the global minimum

and the random nature of data exploration makes it preferable for large, high

content microscopy data-sets. The obtained results demonstrate its reliability

and robustness for fully automated analysis of neuronal morphology from 3D

data stacks acquired by various imaging modalities.

Our work can also be viewed as a stochastic optimization of scale-orientation

space for matched filters, developing a connected network of maximum vessel-
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ness points on tubular structures. Such tubular/ vessel-like structures are abun-

dantly encountered in medical images. Hence, our proposed model has potential

for a wide range of application with adequate adaptation of data term modeling

radiometric features and the desired priors. Our model is independent of data

dimensionality and can be suitably adapted for 2D data. In fact, the biggest con-

cern for MCMC methods applied directly to 3D data volume is the processing

time. While MCMC algorithms are notorious for the time taken for conver-

gence; we employ a MBAD sampling dynamics which greatly reduces com-

putational complexity and speeds up convergence. There has been significant

improvement in increasing stability and speed of convergence. Our experiments

on profiling computation time showed that CPU time is mainly taken in ex-

traction of radiometric features, particularly when it involves a stack of slices.

Efficient handling of 3D data is an open and challenging problem. But with

increasing availability of multi-core, multi-processor systems and advancement

of GPU computing, efficient handling of 3D image data has various possible

solutions. Some marked point process family of methods achieved huge speed

up benefits with data driven parallelization and using GPU [10, 121].

We enumerate, below, the aims of the following chapters:

1. The model is parameter driven. Hence, studies of the sensitivity and ro-

bustness of our model w.r.t. the model parameters and automatic estima-

tion of the critical parameters are important, as that would increase the

general applicability of the family of Marked Point Process based meth-

ods.

2. Identification of critical nodes such as bifurcation and terminals of the
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neurite tree. This will allow to calculate various properties of neurons

such as branching order, average branch length, average branching an-

gles, branch tapering rate etc which parameterize a neuron. These help in

quantification of cell types in neuron shape space. In other words these it

facilitates classification/enumeration of neuron cell type.

3. So far, we only extract the neuronal structures by a configuration of uni-

formly spaced MPP objects. It does not result in a structural representa-

tion of tubular objects. A digital reconstruction capturing the connectivity

relation of the nodal hierarchy of the extracted network presents an analyt-

ical model abstracting out the key information from the vast (and sparse)

3D image volume. In the following chapters, we address the problem of

neuronal reconstruction, where the extracted centreline, local width and

orientation information along with detected critical nodes will aid in a

connected, minimum spanning tree representation of the neuronal arbors.
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Chapter 4

Modeling Single Neurons as

Minimum Spanning Trees
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Extraction and meaningful interpretation of neuronal morphology is a dif-

ficult task. These inherently 3D structures are difficult to capture faithfully as

digital data. The resolution limit of microscopy technique and the slicing thick-

ness of samples introduce a 2D projection effect occluding important nodal po-

sitions and connections, and misappropriating branch length. Imaging artefacts,

such as structured noise, lighting gradation, cluttered backgrounds, and uneven

staining of neuronal fibres give it a discontinuous, beaded appearance. These

artefacts impose further challenges for automatic analysis.

The scope of this work is limited to extraction of single neurons and its

branching patterns. The case of multiple intertwined neurons presenting am-

biguous crossover and bifurcations are resolved currently by applying varied

arbitrary heuristics or resorting to manual post-editing, even by the most so-

phisticated automated reconstruction algorithms [122]. We believe, this issue is

better tackled at the image acquisition step, by differently labeling each neuron,

as is successfully done by the Brainbow techniques [67].

We propose an efficient, stochastic framework for unsupervised neuronal

network extraction in the previous chapter. It requires minimum parameteri-

zation and no user interaction or seed points. In this chapter, we introduce new

priors designed to reflect typical arborization patterns in single neuron data. This

enables accurate identification of branch bifurcation and terminals and gives us

uniformly spaced intermediate nodes anchored to lengths of neuronal fibres.
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4.1 Introduction

Parameter estimation in multi-parameter models is a recurring theme in bio-

medical image analysis. Bayesian inference methods are frequently employed

in medical image computing for calculating posterior probability in the analysis

of an inverse problem. Markov Chain Monte Carlo (MCMC) is a computational

intensive technique often employed for Bayesian inference. They allow prior

knowledge to guide the analysis of image data. For example, the expected size,

distribution and density and organization of cells in an image can be modeled

through various parameters as priors for more robust image analysis. Such pri-

ors improve the stability of the Markov Chain simulation reducing chances of

consistent false-positives. Hence design of priors and the parameter initializa-

tion is of paramount importance in a Bayesian inference framework.

In this work, we examine the parameters of a stochastic marked point pro-

cess framework for unsupervised, automatic reconstruction of single neurons.

Firstly, we classify the model parameters and conduct a sensitivity and robust-

ness analysis. This study identifies the critical parameters and their dependen-

cies and relate their initialization to the application data. Thirdly, we propose

new priors modeling arborization patterns encountered in neurons for efficient

detection of bifurcation junctions, terminal nodes and intermediate points on

neurite branches. These specialized priors also enforce constraints for preserv-

ing the connectedness of the neuronal tree components in spite of imperfect

labeling causing intensity inhomogeneity and discontinuities in branches. This

schema enables us to perform neurite tracing on 3D light microscopy images of

Olfactory Projection Fibre axons from the DIADEM data set with good scores.

67



We complete the presentation of our model with an analysis of the errors and

their sources in the neurite tracing pipeline.

4.2 Parameters of the model

Although there are significant benefits offered by this unsupervised and auto-

matic framework including theoretical guarantees of global optimum, their us-

age is restricted by the difficulty in parameter initialization. In this chapter, we

focus on the problem of automatic initialization of the parameters of a family

of marked point processes. These object processes constitute a natural exten-

sion of Markov Random Fields (MRF), designed to better handle parametric

objects. They have been conceptualized for efficient and competitive tackling

of counting and object extraction tasks in high resolution data, typically in re-

mote sensing and medical image analysis problems.

In the literature, parameters of MPP based methods are mostly initialized by

various heuristic schemes, calibrated from domain knowledge or learnt empir-

ically. In fact, many studies have been carried out to come up with automatic

parameter estimation strategies. In [33, 24, 25, 20] the authors explore various

methods such as stochastic expectation maximization, composite likelihood es-

timator, non-linear least square estimator respectively, for automatic estimation

of parameters. In [24], a method for estimating the inverse temperature 1
β

of

the annealing scheme and the parameter wd weighting the data and prior energy

terms is proposed in the case of a simple marked point process using discs. It

is a generic scheme that requires adaptations to specific applications and energy
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models. However, the critical parameters still require initialization close to the

optimum. Otherwise, the simulation has no means of converging near the global

optimum. A general framework for a fully automatic approach for parameter

estimation is, nevertheless, an open and challenging problem. In the following

section, a critical study of our model shows its sensitivity and robustness w.r.t.

the parameters.

In regard to our model and the adapted energy function, the parameters can

be grouped into the following three categories.

4.2.1 Parameters of objects

The descriptive marks of the chosen objects are often application and data spe-

cific. Generally, the resolution of the image data and the available domain

knowledge about expected size of the objects help in fixing the range from

which these parameters can be sampled. Depending on available evidence of

distribution of size of objects a uniform or gaussian sampling can be carried out

from the ascertained range. For example, in case of Olfactory Projection fibres

the branch widths are mostly uniform in data sets 6,7 and 8; whereas, the in data

sets 1,4 and 5; exhibit a wide variance in branch width. Accordingly the radius

range can be sampled with Gaussian model or uniform model respectively.

4.2.2 Parameters of energy model

The parameters of the energy functions, called “hyperparameters”, in the liter-

ature, are calibrated according to the model and the application data. In our

energy function, the data energy response involves adaptive thresholding for
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discriminating “good” and “bad” objects. It frees the user from the burden of

finding an optimal threshold. A good balance between the data term Ud(γ)

and the prior terms Up(γ), however, is of paramount importance in the energy

function U(γ) = wdUd(γ)+Up(γ). In practice, carefully estimating the relative

weight wd between the data term and the priors ensures that we do not have

to independently deal with the prior parameters. Moreover, it frees the user of

the burden of independently learning the favoring and penalizing potentials of

the priors. Learning wd , however, is challenging, as it depends on many factors

(imaging modality, quality of data, properties of the neuron etc.) Further, wd

should adapt to local sections of the images, rather than be a global parame-

ter. Due to variations in density of labelled neurons, varying depth of the image

stack, and noise in the XY plane, even learning wd locally is difficult. This mo-

tivates us to improve our priors to obtain uniformly good results in all sections

of the data.

The remaining energy priors involve favoring and penalizing potentials U−

and U+, and potentials favoring particular sub configurations E1,E2, respec-

tively. Balancing the energy function reduces to estimating of only one param-

eter wd . wd is proportional to difference of expected number of objects and as

derived from radiometric properties and needs to be learned for every modality

of image acquisition. It depends on modality of imaging, quality of the data, the

nature (density, tortuosity) of the neurons etc. In our experiments it is observed

wd affects the position of the objects only in a small range if data energy and

prior energy are relatively balanced, making it non-critical. Refer Figure 4-1,

for how varying wd values change optimal MPP configurations locally. The bi-
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furcation node is marked green, terminals blue and intermediate nodes in red.

However, when much greater priority is given to either, it affects the number of

objects.

The attempts at empirical learning showed us that estimating wd is a very

difficult task. Firstly, it depends on many factors, such as imaging modality,

quality of data, density of the labeled neuron etc. Secondly, wd should best not

be set as a global parameter and gives better result when it is adapted locally in

the image. We observed, the optimal values of wd gave good results in some

sections of the data and failed in other sections having more densely labeled

neurons. But due to numerous sources of variation such as density of labeled

neurons, and variable noise levels at different depths of the image stack; it was

difficult to find a schema for learning the optimal locally adaptive wd . Hence,

we took a more critical look at our priors and propose improvements in order to

get uniformly good results in all sections of the images.

Figure 4-1: Various MPP configurations with varying wd values.
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4.2.3 Parameters of simulation

The most critical parameters of the model are the parameters controlling the

simulation dynamics. The sensitivity of the model to these parameters are very

noticeable. Unless the birth intensity is initialized optimally, there is little pos-

sibility of reaching close to the global optimum. It is generally set as an over

estimation of the expected number of objects. Let f (I) be the number of objects

expected from the radiometric term. This can be approximated from the number

of voxels (P) in the foreground intensity range by binary clustering algorithms.

Using mean r from [rmin,rmax] and assuming uniform distribution of objects —

f (I) = P
4πr3

3

. Then, in each iteration a fraction z = z0δ (generally, z0 the Poisson

mean is set 1
3 to 1

5 ) of the birth intensity is added to the evolving configuration.

Inverse temperature β and its rate of increase ∆β controls the cooling pro-

cess. It is set heuristically in the literature of Simulated Annealing. Depending

on the expected total number of objects, it is initialized low enough to give the

process enough time for all objects to be detected. Thus, it is proportional to

the difference |δ − f (I)|. It is initialized according to the difference of expected

number of objects and the estimation from radiometry.

The advantage of the adopted MBD dynamics is that the birth of objects is

independent of temperature, allowing new objects to be added to the evolving

configuration, even when the system is cool. Only in the death step, there is

rejection based on temperature, discretization step and the energy. Thus, β is

not critical and is heuristically initialized such that the system has enough time

to cool down slowly, allowing sufficient iterations for the evolution of the con-

figuration. The birth intensity δ0 and its rate of discretization ∆δ parameters
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Object Parameters [rmin,rmax]
∗

OPF [1,10]
CCF [1,25]

calibrated from domain
knowledge and imaging
resolution information

Energy Parameters U = 5;E1 = 2
dr = r1 + r2;dr < da

Empirically learnt;
depends on image
modality, quality etc.

Simulation Parameters δ ∗,
∆δ = 0.999,β = 1,
∆β = 0.998

δ and ∆δ is critical for
no. of objects in
optimal configuration.
The condition for
convergence is
∆β < ∆δ < 1

Table 4.1: Classification of model parameters. * indicates the data sensitive
parameters.

mainly regulate the number of objects in the final configuration. The rate of

cooling that determines the discretization step of the birth intensity has a strong

influence on the quality of optimal configuration achieved. For convergence the

desired condition is ∆β < ∆δ < 1 [32].

4.3 Energy model with new priors

Our aim is to abstract out the neuronal morphology from the microscopy data

into a mathematical model to facilitate further analysis. We sample special con-

figurations of objects fitted to the points of maximum medialness measure on

the image volume. In the following section we describe the role each of the

energy components for neurite tracing in detail.
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4.3.1 Fit to data

Our data energy response is based on the tubularity filter proposed in [98].

The medialness measure M(ωi) is obtained by taking an integral of the im-

age gradient at a scale σG proportional to the object radii along the circumfer-

ence of the cut of the spherical object on the normal plane by a rotating phasor

Vθ = cos(θ)V1 + sin(θ)V2:

M(ωi) = |
π

2

∫ 2π

θ=0
∇I(σG)(xi + riVθ )dθ |. (4.1)

An adaptive thresholding of the medialness response on the gradient response at

the tube’s center Mc(ωi) = |∇I(σH)(xi)| enables to discriminate between “good”

and “bad” objects. The data energy term is then defined as follows:

Ud(ωi) =


−(M(ωi)−Mc(ωi)), ifM(ωi)> Mc(ωi)

0,otherwise.
(4.2)

4.3.2 Connectedness

A pair-wise interaction potential for objects in each other’s zone of influence im-

poses continuity constraints on the configuration of objects modeling neuronal

fibres. It favors objects in poorly stained, fragmented sections. U+ is a repulsive

potential to penalize overlapping of objects, and U− is an attractive potential to

favor objects in touching distances of each other. Figure 4-2 demonstrates this

effect. Every object is surrounded by a zone of repulsion where birth of other

objects are penalized. This can prevent clustering and overlapping of objects.
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Figure 4-2: Illustration of connection prior

Figure 4-3: Effect of connection prior on real data.

Beyond the zone of repulsion is another concentric zone of attraction where

birth of objects are favoured to preserve continuity of structures. In this illus-

tration, w.r.t current object (shaded) with radius r1; object r2 is in the repulsion

zone, object r3 is in zone of attraction, where as object r4 ia not influenced by

object r1.

Ui(ωi,ω j) =


U, if d < dr

−U, if dr ≤ d ≤ da

0, if d > da.

(4.3)
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Figure 4-4: Typical sub configurations encountered in axonal structures.

Here, d is the Euclidean distance between the centers of the spheres; dr and

da (dr < da) are respectively the repulsive and attractive distances, dr,da are

multiples of ri+ r j. By varying dr and da, density of spheres along the neuronal

branches can be controlled. Refer Figure 4-3 to see the effect of connection

prior on the MPP configurations. We see unevenly spaced configuration on the

left image, considering radiometric properties only. On the right image, we see

object at uniform distance considering interaction constraints with radiometric

properties. Moreover, in weakly stained sections when the data term response

is not favorable for an object, this term still ensures survival of the object in the

configuration to ensure continuity of branches.

4.3.3 Spatial configurations

The second prior is a multi-object interaction potential, incorporating constraints

on the local sub-configurations depending on — k(ωi)= |ω j ∈ γ : dr < d(ωi,ω j)<
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da|— number of immediate neighbors of an object. Figure 4-4 highlights the

sub configurations that are encountered in axonal structures. Each sub con-

figuration is identified by its characteristic connection energy - evaluated w.r.t.

the number of neighbors with direct data connection with the current object—

shaded in the image— A: terminal, B: anchor points along the length of a

branch, and C: bifurcation junction. Careful consideration of the prior proposed

in Equation 3.13, and the single neuron structures in the Olfactory Projection Fi-

bre data set, we redesigned the spatial configuration prior to favor bifurcations

and terminals. Firstly, we realize, the condition of favoring k(ωi) = 2 is taken

care of by the connectivity prior as discussed. Secondly, we favor both terminal

and branching points to the same extent, i.e., with the same negative potential.

In the axons, presenting a near perfect strictly one sided binary tree hierarchy,

both these special configurations have equal opportunity for occurrence in the

data. We propose the improved prior as follows:

Uc(ωi) =



∞, if k(ωi) = 0

−E1, if k(ωi) = 1,3

∞, if k(ωi)> 3.

(4.4)

The association of favorable negative energy potentials E1 with particular local

sub-configurations encourage survival of sub-configurations corresponding to

critical nodes such as bifurcations and terminals. At the same time, it discour-

ages isolated objects in the configuration, which are likely to correspond to cell

nuclei or other such background structures. Our analysis of the gold standard

reconstruction indicates there are no multi-furcations in the data considered.
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So, in this way unusual local sub-configurations can be weeded out from the

candidate global configurations. Using such local sub-configurations we can

generate further descriptors for the extracted neurons like average branch curva-

ture, branching order, length etc besides identifying bifurcations, terminals and

points of high inflection along branches.

4.4 Sampling and estimation

The main idea of the proposed approach is to sample special configurations con-

sisting of spherical objects and fit them to the microscopy data stacks to voxels

of maximum neuriteness measures. These configurations are projected onto the

image volume. The configurations are optimized by measuring the similarity be-

tween the projected model of the configuration and the neuronal data. A Gibbs

energy is defined on the configuration space. The optimum global energy is

defined over the space of union of all possible configurations, considering an

unknown a-priori number of objects. Exhaustive search of the solution space is

impractical. We choose an efficient Multiple Birth and Death (MBAD) dynam-

ics [32] to find the Maximum A Posteriori (MAP) estimation (Eq.3.4), greatly

reducing computational cost and speeding up convergence. We optimize the

object configuration in an iterative scheme, where multiple random objects are

proposed and removed independently and simultaneously in each iteration de-

pending on the relative energy change due to their introduction. We sample from

the probability distribution µβ using a Markov chain of the discrete-time MBD

dynamics defined on Ω and apply a Simulated Annealing scheme. At every it-

eration, a transition is considered from current configuration γ to γ
′ ∪ γ

′′
where
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γ
′ ⊂ γ and γ

′′
is any new configuration. The corresponding transition probability

is given by:

(4.5)
P(γ → γ

′ ∪ γ
′′
)

∼ (zδ )|γ
′′ |

∏
ωi∈γ�γ

′

αβ (ωi,γ)δ

1 + αβ (ωi,γ)δ
∏

ωi∈γ
′

1
1 + αβ (ωi,γ)δ

,

where αβ (ωi,γ) = exp(−β (U(γ \ωi)−U(γ))). The convergence properties of

the Markov Chain to the global minimum under a decreasing scheme of parame-

ters δ and 1
β

are proved in [32]. The probability of death of an object depends on

both the temperature and its relative energy in the sub-configuration; whereas,

birth of object is independent of both energy and temperature and is spatially ho-

mogeneous. In this way, the iterative process finds a configuration γ̂ minimizing

the global energy Eq. 3.5.

4.5 Experiments

We evaluate our proposed model by application to axonal trees descriptions from

the DIADEM Olfactory Projections Fibres data set acquired by 2-channel confo-

cal microscopy [21] . While Markov Chain Monte Carlo methods are notorious

for their slow convergence, the novel MBD sampling strategy enables our MAT-

LAB implementation to converge under 5 mins on a machine with Intel Core

i7 processor, 3.4 GHz with 8GB RAM. Note, we run our experiments with the

data term pre-computed. It is observed with live computation of data term for the

same initialization the time taken is roughly 45 mins -1 hr to converge for these

data sets due to the way the 3D volume of images slices is handled in MAT-

LAB. The simulation parameters are fixed - inverse temperature β = 1, time
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Figure 4-5: MPP configuration modeling OP1.
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Figure 4-6: MPP configuration modeling OP4.
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Figure 4-7: MPP configuration modeling OP5.
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Figure 4-8: MPP configuration modeling OP6.
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Figure 4-9: MPP configuration modeling OP7.
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Figure 4-10: MPP configuration modeling OP8.
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Figure 4-11: MPP configuration modeling CCF1.

86



discretization step size ∆δ = 0.997 and inverse temperature update ∆β = 1
0.999

is used for all our experiments. The δ0 for each dataset and the final number

of objects in the optimal configuration are listed in Table. 4.2. Refer Figures

4-5 to 4-11 for the modeling of single neurons morphology with optimal MPP

configurations. For every data set the top panel shows the maximum intensity

projection of Olfactory Projection Fibre axon, in inverted grayscale for ease of

visualization and the bottom image shows the MPP configuration fitted to the

neuronal data on projection of the stacks. The green nodes represent bifurca-

tion, blue nodes terminals and the intermediate nodes on branches are red. Note

that due to the projection effect some of the nodes appear mis-located. Gener-

ally, higher rates of mis-detection occurs in densely branches sections. Some

close lying bifurcation nodes, detected as trifurcations by the model, were duly

resolved as multiple bifurcations.

Figure 4-12: Histogram shows Euclidean distance between points sets {P} and {G}.

We score the performance of our reconstruction method with the DIADEM

metric [41] and the newly proposed NetMets metric [77, 78]. The DIADEM
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metric gives a combined F-score for the positions and connections of the recon-

structed neuron by comparing against a manual gold standard reconstruction.

The DIADEM metric penalizes topological errors closer to the root more than

errors further down the tree hierarchy. It ignores short branches of less than

6 pixel length in the scoring. Due to various inconsistencies, instead of using

this metric, the community has proposed favoring visual inspection of results.

But for the sake and ease of comparing our results against existing methods, we

evaluate the performance of our algorithm with the DIADEM metric as well.

Overall average score obtained by our method is 0.837± 0.043. The NetMets

software, on the other hand, gives a more detailed analysis for the quantification

and visualization of errors in two biological networks. False negative(FN) and

false positive(FP) rates for geometry and connections constitute the metrics for

comparing explicit representations of interconnected biological networks. Fi-

nally, we also compare the deviation of our extracted centreline against the gold

standard. In Figure 4-12, the histogram shows Euclidean distance of the ex-

tracted points set {P} using our proposed model from gold standard manually

delineated centerlines {G}.

Our inspection of the accompanying gold standard reconstructions with the

DIADEM data revealed some of the datasets such as OP5 and OP8, the gold

OP1 OP4 OP5 OP6 OP7 OP8
δ0 2150 1850 1000 1350 1100 1100

No. of objects in
final configuration

435 358 204 283 226 223

DIADEM Score 0.829 0.789 0.797 0.830 0.921 0.854

Table 4.2: Summary of reconstruction
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standard contains only a part of the entire structure. We observed better perfor-

mance on data sets such as OP1 (1496 points) and OP4 (1383 points) in spite

of them showing more complex structure due to denser reconstructed by the ex-

perts compared to other data sets OP5 (135 points) and OP8 (152 points). Thus

for OP5 and OP8 data sets, we used the Simple Neurite Tracer [71] to com-

plete reconstructions in a semi-automatic supervised manner. We used the image

analysis tool Fiji [105] with built-in tools for analysis and hardware accelerated

3D visualization of the results. We used Neuromantic [89] for visualization of

generated SWC files.

Generally, the more error prone regions of the data are the densely branched

sections and the small branches making very acute angles with the main branch.

The performance of our method is poorer in profusely branched sections towards

the axon terminals (particularly OP4), evident from the low connectivity scores

by the NetMets metric. Due to a lack of image data consideration in neighbor

identification these regions prove to be tricky for our algorithm. The other error

prone branches are ones oriented near perpendicular to the imaging plane (along

our “Z” axis). Whenever branches oriented near perpendicular to the imaging

gFN gFP cFN cFP
OP1 0.028 0.041 0.304 0.313
OP4 0.026 0.052 0.671 0.716
OP5 0.025 0.038 0.176 0.6
OP6 0.052 0.052 0.384 0.416
OP7 0.020 0.037 0.258 0.148
OP8 0.138 0.142 0.328 0.454

Table 4.3: NetMets scores for MPP
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plane are present, there is a stark fore-shortening effect of their length leading to

misinterpretation. The primary source of such an error is the slicing thickness at

the image acquisition stage. Such errors introduced during the image acquisition

stage keeps accumulating and culminates in large topological distortion in the

final stages. There is generally a lot of noise in the top slices, which is typical of

confocal microscopy data. It is better eliminated again in preprocessing stages,

ideally by imaging the volume from both end and compositing them together to

get a relatively noise free data.

Our analysis reveals huge anomaly in the number of terminal nodes reported

by various existing methods on the same data sets in the literature. In Figure

4-13, we can visualize the source of these variations. Some of branch termi-

nals appear as blobs. Our MPP algorithm interprets it correctly by modeling it

with a sphere of bigger dimension. But the Neurolucida semi-automated tool

treats them as bifurcation point with very short branches, drastically increasing

the number of terminals nodes. Similarly in sections of high curvature of the

branch, it has also been misinterpreted as terminals. This highlights, once again,

the subjective variability of expert manual or semi-automatic reconstruction and

proves how our MPP model presents a more accurate semantic interpretation of

neuronal morphology.

4.6 Discussion

To conclude, in this chapter, we present a marked point process model with

specialized priors for sophisticated semantic description of neurite morphol-
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SNT
(SA)[71]

Neurolucida
(SA)[45]

3Dtip
(A)[68]

Vaa3D
(A)[128]

MPP
(A)

OP1 41 49 48 43 43
OP4 43 61 46 46 39
OP5 9 9 17 6 9
OP6 18 18 23 12 16

Table 4.4: Terminals reported on same data by different methods. SA: Semi-
automatic; A: Automatic.

Figure 4-13: Comparison with other methods. The position of detected terminals are
marked in blue and the bifurcation in green.

ogy. It gives accurate detection of bifurcation, terminals and intermediate nodes.

This identification of critical nodes enables to derive several parametric descrip-

tors for neuronal classes - such as average branch length, branch tapering rate,

branching order; branching angles etc. Further the study of the model param-

eters reveals their data dependencies and helps to define a set of rules for au-

tomating the initialization of the parameters
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Chapter 5

Reconstruction of Neuronal Tree

Morphology
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In this chapter, we focus on incorporation of an image potential in consid-

eration of neighboring node relation. Indeed, due to lack of it our algorithm
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as described in previous chapter performs poorly at the junctions or densely

branched zones. We develop a framework to use image data in determination of

connectivity of neuronal branches and remove the false positives from the MPP

nodes. In our previous chapters the notion of connection of nodes were based

on the neighbor properties of the defined priors. However, the neighborhood

criteria is based solely on Euclidean distance between the centers of our MPP

objects, with no incorporation of the image data.

Neuronal reconstruction refers to extracting a mathematical or analytical de-

scription of the neuronal morphology that can facilitate further analysis. Model-

ing the hierarchy of neuronal branches is a difficult task. Firstly, the resolution

limit of microscopy technique and the slicing thickness of samples introduces

a 2D projection effect resulting in occlusion of important nodal positions and

connections. Uneven staining with biological markers gives beaded appearance

to neurite branches. While branch cross-sections are commonly expected to ex-

hibit Gaussian intensity profiles, often membranes take up strong contrast and

the inverted Gaussian profile gets misinterpreted as parallel running branches.

Imaging artifacts, such as structured noise, lighting gradation or cluttered back-

grounds, impose further challenges for automatic analysis.

5.1 Introduction

We obtain an extraction of the neuron data by the fully automatic marked point

process and stochastic optimization framework described in the previous chap-

ters. We fit configurations of spherical objects to high neuriteness voxels in
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the data volume. This representation identifies the terminal and bifurcation

nodes, and anchor nodes along the branches. While it provides sort of a semi-

segmentation of the neurite that allows the trained expert eye to extrapolate the

continuity; it does not guarantee physical connectivity, particularly in weakly la-

beled sections of a neuron. We choose a subset of these points to re-initialize our

front at optimal intervals during the fast marching. We sub-sample the object

configuration to select a set of nodes ni = [xi,yi,zi]∈N iff : ni is a terminal node,

bifurcation node or high curvature node along the length of a branch. Our con-

sideration of an image potential in determination of nodal connections removes

the false positives from our initial set of node while generating a connected

minimal spanning tree representation. In this way, we propose a method for

abstracting the neuronal morphology from the microscopy data and presenting

a digital reconstruction of it in the standard SWC format, prevalent for storage,

sharing and analysis in the neuroimaging community.

Related works

Tubular structure such as neurites, vasculature networks, bronchial airways are

abundantly encountered in biomedical imaging. Inferring connectedness of ves-

sels is a commonly studied problem in biomedical imaging. Some examples

are angiographic studies of coronary arteries, vasculature networks in differ-

ent organs, retinal images. Generally, the vascular network or neurons are

injected/labelled with some biological dyes to show strong contrast with the

background or neighboring organs and structures during imaging to aid in trac-

ing. Traditionally, multi-scale Eigen-analysis [36], in combination with gradi-
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ent information [56] or intensity ridge traversal [11] are used to detect seeds

on tubule centerlines. These filters find voxels maximizing a vesselness mea-

sure by collecting responses over a range of filter scales. However, they have

limited ability in describing the connectedness, tree hierarchy and branching

pattern of complex neuronal arborization. Hence, shortest graph path based neu-

rite tracing methods are employed for the purpose of generating their Minimum

Spanning Tree (MST) models. They connect paths of maximum neuriteness

voxels locally between sets of seed points to extract the global neurite structure

[115, 27, 122, 97]. In the following section, we analyze the major classes of

neuronal reconstruction algorithms.

A. Firstly, parametric deformable models such as the Active Contours method-

ology is very popular for connecting seed points locally on neurite branches

[27],[122]. The snakes deform under the influence of internal data driven en-

ergy and external regularization forces to assume the arbor contour on energy

minimization. The intrinsic shortcoming of snake based methods is their sen-

sitivity to initialization and background noise, in addition to being computa-

tionally expensive. Active contours require very precise initialization to avoid

being trapped by local energy minimum. Extensive preprocessing is required

for selection of candidate voxels for the initialization of snakes and dynamic re-

parameterized is necessary to accurately recover the object centreline. The sec-

ond limitation is its inability to deal with topological adaptation such as splitting

or merging branch parts.

B. A second class of local explorative methods — the Iterative Model Fitting

— fit a mathematical neurite-like kernel, between sets of detected seed points
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[136]. These methods are computationally efficient since it performs a localized

search by matching templates at different orientations at the end of already de-

tected segments. But the high cross-sectional morphology variability does not

allow for such shape averaging. The neuronal fibres are approximate tubules

often of irregular cross-section depending on “XY” and “Z” data acquisition

resolution. Moreover, such cylinder or tubule like templates perform poorly at

junctions or bifurcations.

C. In contrast to the local explorative methods, the global methods are mainly

based on skeletonisation or medial axis representation of a segmented neurite

image [14, 88]. A good segmentation of the data is difficult to achieve due to

artifacts introduced during imaging, structured noise and the non-uniform stain-

ing of neuronal fibres. Subsequent pruning of the skeletal tree is necessary to

remove loops and spurs that add loops and false length to the neurites. Of-

ten, heuristic post processing, requiring manual intervention, are necessary to

join disconnected components. Moreover, the memory requirements of global

methods are, generally, exceptionally high making them unattractive choices for

large data sets (and limiting them to 2D data only [14]). Automated neuronal

reconstruction is still an open and challenging problem is evident from the many

recent review literature on the topic - [79, 34, 107].

In this work, we propose a fully automatic framework, requiring no user

interaction to generate a meaningful and precise description of the neuronal ar-

bors. For this purpose, first, we adopt a gradient vector field based speed map,

taking into account the anisotropy of the voxels in the image stack, to guide front

propagation. Second, we choose the parameter-free fast marching methods to
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extract the neuronal fibres as geodesic curves. We use a set of optimal con-

trol points to re-initialize the front at frequent intervals. Finally, to answer the

key issues of analysis of neuronal fibres our method captures the inherent graph

structure of the minimal paths and order them into a minimum spanning tree

hierarchy. The underlying numerical principles make it fast, memory efficient

and robust.

5.2 Proposed method

Figure 5-1: The flow chart for the reconstruction pipeline.

Our aim is to capture the positional and connectivity information of neu-

ronal morphology into an analytic model. Refer Figure 5-2 and Figure 5-1 for

an overview of the reconstruction pipeline. The automatically generated seed
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Figure 5-2: The algorithmic steps in the reconstruction pipeline.
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Figure 5-3: A. Gradi-
ent vector field

Figure 5-4: B. Speed im-
age

Figure 5-5: C. Centre-
line in red

points by Marked Point Process model with green nodes showing bifurcation,

blue as terminals, red nodes as anchors and points of high curvature along the

branches. These nodes are used to frequently re-initialize the marching front.

The middle image shows the Gradient Vector Field (GVF) based speed image

its color map. The bottom image shows the resulting tree on maximum intensity

projection of Olfactory Projection Fibre data set 5. The neuron tree reconstruc-

tion by fast marching models the branches by the geodesic curves representing

the medial axes of their topologies. Our algorithm goes through the following

steps-

1. We begin with a set of automatically generated nodes as our control points

to re-initialize the front for the reconstruction of neural tree. The selection of

nodes includes terminal nodes (in blue), the bifurcation junctions (in green) and

the anchor points (in red) along the branches that show maximum non-linearity

w.r.t. its immediate neighbors, i.e., the high curvature voxels.

2. An adjacency matrix defines connections between nodes with edge weights

as euclidean distances. We perform a topological sort of the selected subset of

nodes into a tree-like hierarchy using Kruskal’s algorithm [57]. We now aim to

100



perform a depth first traversal of the obtained tree, starting from the root, as pro-

vided with each data set, to generate the directed MST of the voxels representing

the centreline of the neuronal structure.

3. We compute a Gradient Vector Field (GVF) of the original data volume

to generate a speed map. This map facilitates the implementation of Front Prop-

agation.

4. From a start node we allow the front to propagate until it reaches the end

node. A gradient descent on the arrival time map of the front connecting the

start and end nodes extracts the geodesic curve between them in the form of the

medial axis of the branch shape. For the erroneous nodes in our node list, the

due to the image potential based speed map, the minimal path fails to connect

the 2 nodes. This enables us to remove the false positives nodes and obtain a

reduced node set for our spanning tree.

5. We re-initialize our front and perform Step 4 iteratively until all nodes

(control points) are visited. Thus, we obtain a tree-like description of the neu-

ronal data by modeling the branches and segments by their centerlines in the

form of a Djikstra’s minimal graph path representation.

In this way, we generate a fully connected minimum spanning tree from of

the noisy unstructured microscopy data containing the neurite. This digitized

representation of both morphology and connectivity information of neuronal

data can facilitate further analysis. In the following sections, we explain in

further detail the individual steps involved.
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Figure 5-6: Attempted minimal paths between root and first branch point in absence
of intermediate control points.

Figure 5-7: Minimal path with intermediate control points to reinitialize the front.

5.2.1 Control points

Refer Figures 5-6 and 5-7, for reconstruction attempts in absence and pres-

ence, respectively, of MPP nodes as control points. Figure 5-6 shows attempts

at finding minimal paths between root and first branch point in absence of in-

termediate control points to reinitialize the front. The synthetic example is a

challenging one due to the gradience in the background and the high curvature

of the branches, besides the increasing levels of noise. Figure 5-7 shows min-

imal path between root and first branch point with intermediate control points

to reinitialize the front. These control points optimally localize computation on
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our structure of interest, preventing the minimal paths from leaking out of the

structure due to background gradience or cutting corners at high curvature re-

gions. It is observed, in presence of cellular structures or structured noise in the

vicinity of the branches, or illumination gradation in the background, the front

tends to spill out of our structure of interest into the background. Often, these

artifacts become sources of errors by getting connected as part of network dur-

ing digital reconstruction falsely increasing neural length. Conversely, minimal

path representations cut corners at high curvature regions of branches shortening

actual neuronal length. Hence, these control points re-initialize the propagating

front at frequent intervals to optimally localize the computation and control the

quality of the reconstruction. We sub-sample the MPP object configuration to

select a set of nodes ni = [xi,yi,zi] ∈ N iff : ni is a terminal node, bifurcation

node or high curvature node along the length of a branch.

In this work, firstly we propose a scheme to find a reduced set of nodes to

define our tree by removing some false nodes from the detected neuron mor-

phology. A spanning tree of a graph is a subgraph containing all the vertices

and no cycles. Secondly, we utilise this framework to verify the edges between

the neuronal nodes given by the MPP objects in the image data by modeling

them as geodesic minimal paths. We iteratively build up a minimal spanning

tree by adding the neuron branches as edges.

5.2.2 Speed map computation

The second step is computation of a speed map for the subsequent Front Propa-

gation (FP) phase. Our speed map is calculated by diffusion of a Gradient Vector
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Figure 5-8: The speed image of synthetic data (SYN01).

Figure 5-9: Extracted centerlines overlayed in red on speed image.

Field (GVF). It was proposed by Xu. et al in [130] to enable edge-preserving

diffusion of gradient information. The GVF exhibits some characteristic prop-

erties that felicitates detection of topological centerlines or medial axes. It is

noted that the magnitude of the gradient vector decreases inwards away from

the boundary and vanishes at the center. For given image volume I, and an ini-

tial vector field F = |∇IσG|, where σG is the scale of the gaussian, the GVF is

defined as the vector field V (x) that minimizes the energy:

Egv f (x) =
∫ ∫ ∫

V3
µ|∇V (x)|2+|F(x)|2|V (x)−F(x)|2. (5.1)
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Figure 5-10: Gradient vector field and connected minimal paths.

Here, voxel vector x = (x,y,z) ∈ V3 , the image domain, and µ is a pa-

rameter for balancing between the two terms dependent on noise level in data.

The intuition behind this variational formulation is to achieve a slow varying,

smooth result in homogeneous, no-data regions; while, in the regions of inter-

est, it maintains the strengths of the original edge map. In practice, it makes the

GVF robust at determination of medial axis for even arbitrary shapes and weak

structures.

In Figure 5-8, we see the speed image of the synthetic data and color map for

its interpretation. Due to strong background gradation, we can see propagation

speed is high at the right corner, which would cause the propagating front to spill

out of the structure in absence of terminal nodes to stop them. Figure 5-9 shows

the speed image of real data and color map for its interpretation. Propagation

speed is highest along the centerlines of the branches. The extracted centerlines

are overlayed in red on speed image. Figure 5-10 shows a visualization of the

Gradient Vector Field showing convergence of vectors at centreline of neuronal

branches. On the right side in Figure 5-10, we see in spite of beaded appearance

of neuronal branches (top), a connected minimal path is approximated (in green,
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bottom).

In our implementation we adopt the diffusion based GVF (dGVF) function

in MATLAB. In case of our 3D image stack with differential in-plane and “Z”

axis resolution, the isotropic GVF fails to produce a robust speed image. dGVF

can handle the problem associated with poor convergence of gradient vector

flow in 3D volumes, by adjusting the time-step based on voxel dimensions.

dGVF generates differential diffusion speeds in tangential and normal directions

according the local structures of the image, taking into account the anisotropy

of the voxel dimension. This modification is a key factor in improving the speed

image to locate the centerlines of the neuronal fibres.

In order to exploit both magnitude and directional information of the ob-

tained GVF, we calculate the average outward flux for every voxel. The numer-

ical computation is made robust by employing the divergence theorem [118].

The divergence at a point is defined as the net outward flux per unit volume, as

the volume about the point shrinks to zero. Via the divergence theorem, we get:

D(x) =
1
Ni

∫ ∫ ∫
V3

V (xi).n̂idSi, (5.2)

where Ni is a 26-neighbor of xi and n̂i is the unit outward normal at xi of the unit

sphere Si in 3D, centered at xi.

Fast Marching Methods are designed for problems in which the speed func-

tion never changes sign, so that the front is always moving either forward or

backward. This allows to convert the problem to a stationary formulation, which

combined with numerical tricks, gives it tremendous speed. Hence, we perform
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a re-scaling of the divergence function as explained in [83] and normalize the

speed image F(x) to bring it in range [0,1]:

F(x) = exp(γ[1−D(x)].∗ I(x))−1, (5.3)

where γ is a noise control parameter, set at 1.2 for our experiments. It is ob-

served that further strengthening the speed image by multiplying with the origi-

nal data I(x) considerably speeds up the front.

5.2.3 Edges as geodesic minimal paths

Fast Marching Methods (FMM) were introduced to find numerical approximate

solutions to the boundary value problems of the Eikonal equation [76]:

F(x)|∇T (x)|= 1. (5.4)

Here T (x) is an arrival time map that denotes the time taken by a front originat-

ing from xs and propagating according to the speed map F(x) to reach voxel x f .

Next, a gradient descent using the 4th order Runge-Kutta time-step operator on

the arrival time map T (x) extracts the path corresponding to the shortest arrival

time between the start node ns← xs and end node n f ← x f .

Beginning with the root node R and a list of unvisited nodes n1,n2 . . . ∈ N,

at every iteration, our algorithm extracts a part of the neuronal morphology by

computing the geodesic curve of the branch topology. We allow the front to

propagate guided by the speed image F(x) until it reaches one of the nodes ni

from the node list N. From this node n f ← ni to the point of initialization of
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Figure 5-11: Reconstruction of challenging synthetic data (SYN01).

marching front ns, a gradient descent is performed on the arrival time map to

compute the geodesic path between the two. The resulting minimal path p is

updated to the list of minimal paths pi∪ p. Next, we update the just visited node

as the start node ns← ni, remove it from node list N = N− ni and re-initialize

the front to extract the next part of the neuron tree. On reaching a terminal node,

we trace back to the immediate past bifurcation and continue the iterative pro-

cedure. We terminate when node list N is empty. In this way, FMM captures

accurate minimum spanning tree representation of neuronal morphology by iter-

atively adding minimal paths between nodes [28]. FFM offers several desirable

features such as inherent connectivity and smoothness, which counteract noise

and cross-section irregularities.

108



5.3 Experiments and results

We test the performance of our proposed model on synthetic data modeling

actual challenges and 3D light microscopy image stacks from the DIADEM

Challenge database [21]. The Synthetic data (SYN01) exhibits high curvature

fibres presenting sharp corners and a strong gradience of the background, such

as found in case of uneven illuminance during image acquisition. Refer Figure

5-11 for results. The sharp curvature of the branches and added noise make it

a challenging task. It contains a single “axon-like” binary tree, corrupted with

Gaussian and salt and pepper noise. The DIADEM Olfactory Projection Fibre

data sets are axons acquired by 2-channel confocal microscopy.

gFN gFP cFN cFP
OP1 0.028 0.041 0.304 0.260
OP4 0.026 0.052 0.546 0.391
OP5 0.025 0.038 0.176 0.333
OP6 0.052 0.052 0.384 0.320
OP7 0.020 0.037 0.225 0.040
OP8 0.138 0.142 0.328 0.352

Overall 0.026±0.005 0.042±0.006 0.327±0.12 0.282±0.12

Table 5.1: NetMets scores for MPP+FFM

OP1 OP4 OP5 OP6 OP7 OP8 overall
DIADEM Score 0.846 0.807 0.818 0.854 0.926 0.863 0.852±0.038

Table 5.2: DIADEM scores for MPP+FFM
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Avg Manual Tracer 0.78±0.1[83] -
Stepanyants et. al 0.80±0.1[27] Semi-automatic

Roysam et. al 0.863[122] Semi-automatic
Mukerjee et. al 0.82±0.07[83] Automatic

Xiao et. al 0.77±0.17[128] Automatic
MPP 0.837±0.043 Automatic

MPP+FFM 0.852±0.038 Automatic

Table 5.3: DIADEM scores comparison

5.3.1 Evaluation

Although the method of validation of traces itself a topic of much research with

various metrics being employed [37, 42, 78], we choose to evaluate our auto-

matic reconstruction using both DIADEM metric [42] and NetMets [78]. As

explained previously, the DIADEM metric is particularly crafted for scoring

Neuronal tree hierarchic reconstruction and is more relaxed in penalizing errors

far from the root node. Whereas, NetMets is for more general graph comparison

with more expressive scoring system.

In our experience with the various semi-automatic tools for neuronal mor-

phometry analysis, the baseline inter-software variability limits the DIADEM

metric score at 0.91. Indeed, this represents the inherent limitation of validation

against gold standard manual reconstructions due to lack of a singular ground

truth. Table. 5.3 presents the DIADEM metric scores of various reconstruction

tools. The existing methods are mostly semi-automatic and incorporate user-

interaction at some stage of reconstruction. The Open Snake method [122] and

the method presented by Stepanyants et. al [27] were judged the two best meth-

ods in the DIADEM challenge. But there is significantly large variance with
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the Open Snake method, 0.836± 0.35, due to incorporation of user interaction

in the final stage for proof-editing and optimization of original automatic trace.

Our MPP+FFM method performs better than existing fully automatic methods

in the literature. We have presented a fully automatic framework for analytical

modeling of 3D neuronal morphology. Our Marked Point Process neurite model

and Fast Marching combination makes it fast, robust and accurate. Further to

the DIADEM scores, using the NetMets scores of geometric (g) and connec-

tivity (c) false positive rate (FPR) and false negative rate (FNR) gFNR, gFPR,

cFNR, cFPR further helps us see how the incorporation of an image potential

consideration in connectedness of nodes consideration removes some of the er-

roneous nodes of MPP neurite model and improves the overall reconstruction

results.

Overall, our algorithm performs uniformly well over all the Olfactory Pro-

jection Fibre datasets modeling the exceptional challenging scenarios encoun-

tered during neuronal reconstruction. The most challenging data set for our

algorithm is OP4, due to its dense and profuse branching at the terminal end

and OP5, which besides the high SNR, presents significant branch cross-section

distortion from the assumed circular shape. Refer to NetMets generated graphs

(Figures 5-12 to 5-17) for visualization of missed nodes and errors of MPP

and MPP+FFM reconstruction. The top image is the visualization of gold stan-

dard manual reconstruction. Red node indicates the missed branch. The middle

visualization is the automatic reconstruction with our proposed marked point

process. Red nodes indicate the erroneous region, sometimes highlighted with

boxes. The bottom image shows reconstruction using fast marching and marked
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point process, where we can see false positive nodes are removed. Finally, Fig-

ures 5-18 to 5-23 show the reconstruction by our proposed method (in red) and

the manual gold standard reconstruction (in magenta) for reference.

5.4 Discussion

In this chapter, we propose a pipeline to integrate the detection, modeling and

reconstruction tasks. Our method produces an automatic and reliable extrac-

tion of neuronal morphology. It is robust to small branch discontinuities, inten-

sity variations due to inhomogeneous labeling, irregular cross-sections, noise

and background gradience. In addition, it is good at faithfully following high

curvature branches. Overall, it improves the accuracy of automated neuronal

reconstruction and minimizes variability.
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Figure 5-12: NetMets visualization of our results with MPP and MPP+FFM against
the manual gold standard reconstruction.
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Figure 5-13: OP4: NetMets visualization of our results with MPP and MPP+FFM
against the manual gold standard reconstruction.
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Figure 5-14: OP5: NetMets visualization of our results with MPP and MPP+FFM
against the manual gold standard reconstruction.
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Figure 5-15: OP6: NetMets visualization of our results with MPP and MPP+FFM
against the manual gold standard reconstruction.
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Figure 5-16: OP7: NetMets visualization of our results with MPP and MPP+FFM
against the manual gold standard reconstruction.
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Figure 5-17: OP8: NetMets visualization of our results with MPP and MPP+FFM
against the manual gold standard reconstruction.
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Figure 5-18: OP1: The reconstruction by our proposed method (in red) and the manual
Gold Standard reconstruction (in magenta) for reference.

Figure 5-19: OP4: The reconstruction by our proposed method (in red) and the manual
gold standard reconstruction (in magenta) for reference.
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Figure 5-20: OP5: The reconstruction by our proposed method (in red) and the manual
Gold Standard reconstruction (in magenta) for reference.

Figure 5-21: OP6: The reconstruction by our proposed method (in red) and the manual
Gold Standard reconstruction (in magenta) for reference.
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Figure 5-22: OP7: The reconstruction by our proposed method (in red) and the manual
Gold Standard reconstruction (in magenta) for reference.

Figure 5-23: OP8: The reconstruction by our proposed method (in red) and the manual
Gold Standard reconstruction (in magenta) for reference.
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Chapter 6

Conclusion
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The aims of this thesis are two-fold. Firstly, to exploit image processing and

computer vision tools for automatic analysis of high content, high resolution

3D image stacks routinely generated by diverse microscopy methods. Secondly,
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to quantify neuronal morphometry in standard SWC formats, favored by neuro-

biology community for concise description of neuro-image informatics. We

broke the problem down into three methodological challenges — detection of

neuron-like tubular structure networks, relating parameter initialization to appli-

cation data; design of improved priors for description of tree-like single neuron

topologies in biomedical structures and finally, digital reconstruction of neu-

ronal morphology into connected minimum spanning tree representation. The

following section concludes the thesis with a summary of our motivations, con-

tributions and reiteration of the salient features of our works.

6.1 Summary

6.1.1 Detection of tubular structure networks

In Chapter 3, we present an object detection framework to extract connected net-

works of high medialness voxels representing the centerlines of tubular structure

networks. Vessel or tubular structure detection in large biomedical images is a

frequently encountered problem. Our proposed method combines the merits of

both local (sub-configuration optimization through geometric shape and inter-

action priors) and global information (optimizing a global objective function).

Our 3D marked point process model with varying object dimension simultane-

ously extracts position of centerline, local width and orientation. Besides, it

enforces continuity in weakly labeled and noisy sections of the data by means

of high level priors on object interactions. A segmentation of the structure can

be further obtained by taking the envelope of these spheres as we move along
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the branch centerlines.

6.1.2 Descriptive tree topologies for single neurons

In Chapter 4, we focus on modeling of single neuron morphology. We propose

new priors emulating the arborization patterns exhibited in axonal and dendritic

trees. We successfully classify critical nodes like bifurcations, terminals and

anchoring nodes along neurite branches in images of single neuron data sets. To

automate the process of parameter initialization, we classify the parameters of

our model, relating parameter initialization in a meaningful way to the proper-

ties of application data. Based on our empirical learning we propose a set of

rules for parameter estimation. Our investigations further identifies the critical

parameters and leads to design of new priors that offer descriptive modeling of

tree topologies. We can derive quantification of estimable parameters such as

branching index, branching angles, internodal lengths, branch curvature etc.

6.1.3 Digital reconstruction of neuronal morphology

In Chapter 5, we propose an automatic pipeline for reconstruction of 3D neu-

ron data. Numerical methods like fast forward marching provide fast and robust

implementations that are scalable in complexity to 3D biomedical data. We ab-

stract out important positional and connectivity information of neuronal topol-

ogy from huge microscopy data volumes into graph theoretic SWC format that

is readable by most neuronal analysis and visualization softwares. It offers con-

cise analytical model for ease of storage, exchange, and archiving of data. The

advantages offered by fast forward marching is the inherent connectedness of
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minimal paths modeling the medial axis of neurite branches, which are further

organized into a minimal spanning tree hierarchy. Our incorporation of a gra-

dient vector field lifts any shape assumption on neurite branches and ensures

accurate centreline detection in arbitrarily shaped topologies. The fast marching

technique enables incorporation of an image potential in evaluation of connect-

edness of Euclidean neighbor nodes that help to rectify mis-location of critical

nodes.

This concludes our work on designing an integrated detection, modeling,

and reconstruction pipeline for neuronal trees from high content, high resolu-

tion image data. Our evaluation with multiple metrics show that the proposed

algorithm out-performs the existing state-of-the-art reconstruction techniques

and minimizes the inherent subjective variability of semi-manual methods, in-

corporating user-interaction at any stage.

6.2 Perspectives on future research directions

In the following section we discuss the open problems and new research direc-

tions on which our proposed framework has direct implications.

6.2.1 Enumerating neuron cell types

Study of shape-orientation space of neurons convey information about their

molecular and functional identities. Systemic enumeration of neuronal cell

types is important in comprehending the brain’s abilities. Even today, the neu-

roanatomists have limited knowledge about diversity of neuron cell types. Sci-
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entists catalogue/classify neuron populations according to their specific differ-

entiated functions. The intricate structure-function co-relation of neurons, the

structural and functional building blocks of the nervous system, has been con-

clusively proven. This implies that morphology analysis of neurons can pre-

dict hitherto unknown cell functions/categories [135]. It is a 2-step process —

neuron tracing followed by its localization in the neuron shape manifold [110].

To analyze the parameter space (density, branch directionality, information that

can be derived from our proposed model) of neuronal morphology to identify

the discriminating factors for inter and intra class differences in the neuron cell

types is still an open problem. This work would require close collaboration with

cellular neuro-anatomists. Computational approaches to quantify neuronal mor-

phogenesis in longitudinal studies are expected to establish patterns of neuro-

degeneration for disease diagnosis and prediction. Automated image analysis

and quantitative neuro-informatics will assess the complex and dynamic nature

of neuronal morphogenesis over time in response to various electro-chemical

stimuli. Finally, this will identify the neuronal parameters for discrimination of

healthy inter-neuron morphology variability and pathologic conditions.

6.2.2 Neuronal morphogenesis for connectomics

For connectomic studies, neuron to neuron interaction is very important. Multi-

neuron scenarios present challenging, ambiguous cases of overlap of fibres from

different sources (potential synapse sites) and branching of neuronal fibres. Re-

cently, various heuristics have been proposed in the literature to deal with such

ambiguities [37], but their success is limited to only sparsely labeled neurons.
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The Neuromuscular Projection Fibers, for example, represent very peculiar chal-

lenges of parallel running, overlapping axons [73]. The Brainbow technique la-

bels neuronal fibres from different source cells with differently expressed mark-

ers by genetic manipulation [67]. This enables in visually distinguishing the

intertwining fibres. Computational techniques like Gaussian Mixture models or

k-means clustering is used to separate out the neuronal cells in multi-neuron in-

teraction interpretation before applying single neuron tracing techniques.

Adaptation of our proposed automatic neuronal morphometry analysis frame-

work to such high content, high resolution data can capture the key information

for intertwined neural networks. This would require proposal of effective en-

ergy functions and marked objects to combine the color, structure and gradient

information for neurite detection in presence of undesired channel cross-talk and

insufficient resolution. Moreover, it is challenging to deal with shape variabil-

ity presented by soma and neurites as encountered in whole neuron scenarios.

One limitation of our algorithm is its poor results on densely branching regions,

a general problem when using highly blurred images where processes that are

very close or seem to touch each other. The combination of genetic labeling

with super-resolution imaging technology has proven to produce image data

with better reliability for accurate quantification of neuronal arbors position,

even in densely labeled data [94, 62, 75].
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6.2.3 Massively parallelized processing for high-throughput

analysis

For large scale, high through-put analysis of neuronal morphology it is in-

evitable to have optimally parallelized implementation of our proposed auto-

mated reconstruction algorithm. The most attractive feature of our proposed

MPP model is its inherent, multi-level parallelization scope and thus, its ability

to scale. MCMC simulations are notorious for their slow convergence. Vari-

ous studies have focused on exploiting its ”embarrassingly” parallel property to

speed up computation. Our current implementation uses a multiple birth and

death dynamics that speeds up convergence. Further it reduces computational

load by avoiding RJMCMC type perturbation moves on the objects. Our MAT-

LAB implementation runs on a stand-alone desktop. However, the practicality

of such algorithm in high throughput microscopy applications demands paral-

lelized implementation. In [10, 121], are two examples of MPP family of algo-

rithms whose massively parallel processing have enabled significant reductions

in runtime, from few hours to few seconds.

There has been considerable efforts to speed up MCMC algorithms by both

implementation tricks and statistical techniques. Beyond guarantee of conver-

gence, the efficiency of these algorithms needs to be considered. A low accep-

tance ratio for transition between states leads to a slower convergence speed

and wasteful CPU computation time. To fully exploit the advantage of marked

point processes on image processing tasks, further work on optimization tech-

niques is necessary. On the other hand, in [22], are presented implementation

techniques of MCMC algorithms to optimally take advantage of multi-core and
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multi-processor architectures in reducing the runtime of MCMC applications.

Our profiling of the execution showed that the maximum computation time is

Function % of total execution time
Birth 85%

Eigen Analysis 76%
Death 7%

Table 6.1: Table shows time spent in each section of MPP algorithm.

incurred in the calculation of the data energy term 6.1. It indicates that the max-

imum time is spent in Eigen analysis and computation of data energy response.

Our data energy response is independent of other objects influence and hence

can be easily computed in parallel, perhaps using Eigen analysis in GPUs to

speed up the process. The second order terms where neighboring objects influ-

ence each others’ overall energy places constraints on the parallel simulation of

spatial processes. Problem arises when computation on one spatial position of

data is dependent on concurrent computation in another position. For example,

if objects were killed in parallel, we have to synchronize the order of killing ob-

jects so as not to penalize an object for an overlapping neighbor that has already

been killed. This dependency requires segregating zones of influence in the data

volume, a task handled through a chessboard scheme of non-interacting block

level parallelization in [120]. Such constraints makes parallel computation of

stochastic lattice models a non trivial task. In [64], the author demonstrates

how each processor performs computations on a single sub-lattice and main-

tains communication between processes responsible for adjacent sub-lattices in

an efficient way without creating long stalls in computation. Hence, we propose
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that 2 potential avenues to investigate for high-throughput analysis of neuronal

morphology analysis -

1. GPU processing of neuriteness measure to speed up the data energy re-

sponse computation.

2. Optimal parallelization of MPP framework for taking advantage of multi-

core systems and inherent parallelism of Markov Chains.
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