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Abstract: Nowadays, in most of the major hospitals, Parkinson's Disease (PD) is mainly diagno-
sed using cognitive testing. These tests place the patients according to their scores on one of the
scales determining the severity of the disease: Uni�ed Parkinson's Disease Rating Scale (UPDRS)
or Hoehn&Yahr (H&Y) rating scale. As a consequence of both of these procedures, the diagnosis
is only possible after the installation of PD, which occurs years from its onset, determining irrever-
sible changes in the physiology of the patient. Early diagnosis and even prognosis would de�nitely
o�er the specialists the possibility to study the disease at the pathology onset and maybe reverse
or signi�cantly slow its e�ects.

In this context, the primary purpose of our research concerns the use of medical imaging as
PD's early biomarker. The present study focuses on several aspects: the context of the biomarkers
for PD and the place of medical imaging in this context, the advantages of the use of medical
imaging as biomarker and the procedure to employ them without damaging the information and
maximizing its exploitation.

After determining the speci�c anatomical regions a�ected by PD, able to be detected and
quanti�ed in MRI images, a feasibility study establishes if the medical imaging information is
correlated with the disease and if extraction can a�ect it. Starting from the validation of these
fundamental aspects, we design a fully automatic system, handling the medical image information.
This automatic system receives the medical images as input, in the format adopted by clinicians,
being able to supply the severity of PD on one of the scales used by the neurologist to determine
PD. Studying the PD pathology, medical clinicians determined that the dopamine, one of the main
neurotransmitters, is the main factor in PD pathology. It is produced in the midbrain area by
the anatomical structure called Substantia Nigra. As this structure is not well delineated, we are
studying the midbrain area. During the feasibility study, we determine if this area, extracted from
the medical image, can be correlated with PD on the anisotropy level. The anisotropy is one of the
measures used to determine the dopamine quantity. In this case, the medical image is the supplier
of information and the source used for PD detection. This represents the di�erence from all the
other biomarkers which use the medical information only as a supplier, not as a source. Exploiting
it in this way we aim at bridging the gap between the pathophysiology represented by the medical
image information and the clinical level represented by the PD severity.

A total of 143 subjects, among whom, 68 patients diagnosed clinically with PD and 75 control
cases, underwent DTI imaging. These MRI images are speci�c for PD studies as they reveal the
anisotropy level. Among the DTI images, the EPIs have lower resolution but provide essential
anisotropy information related to the neural �bers a�ected by the dopamine. As the neuromotor
tract a�ected by PD pathology represents one of the speci�c symptoms that determine the diagnosis,
we are trying to detect and study the dopamine level on this tract. For this purpose, a tractography
process is required. Based on the fact that the tract starts from the midbrain area and that another
volume of interest could re�ne the detected tract, we determine the second anatomical region used
as target for the �bers. With two volumes of interest (VOI), the accuracy of the neuromotor tract
detection is increased using a global tractography. The two volumes in our study are represented
by the midbrain and the Putamen. The Putamen is chosen due to previous studies, indicating
physiology changes on this structure and due to its relative positioning to the midbrain area,
representing an endpoint for the trajectory of the neuromotor tract.

For using the �bers as a measurable element during PD diagnosis, we introduce new metrics:
�ber density (FD) and �ber volume (FV). Furthermore, comparing patients based on the extracted
�bers and evaluating them according to Hoehn&Yahr (H&Y) scale can be done using these mea-
sures. The determined �bers, evaluated with our own metrics, represent the source of information
during the decisional stage. Thus, during this stage, we require the extracted features on which
we perform PD diagnosis and prognosis.

Keywords: Medical Image Processing, Medical Image Analysis, Automatic VOI detection,
Parkinson's Disease, Parkinson's Disease Detection, Diagnosis, Prognosis, Information fusion,
Neuro-fuzzy systems



Résumé :À l'heure actuelle, dans la majeure partie des services hospitaliers spécialisés, la
maladie de Parkinson (PD) est déterminée en utilisant des tests cognitifs. Ces tests classi�ent les
patients sur unes des échelles utilisées pour détecter la sévérité de la maladie : UPDRS (Uni�ed
Parkinson's Disease Rating Scale - l'échelle uni�ée de la sévérité de la maladie de Parkinson) ou
Hoehn & Yahr (H&Y). La diagnostic est possible seulement après l'installation de la maladie, des
années après son apparition. À ce moment là, le processus est irréversible. Le diagnostic précoce
pourrait ainsi o�rir la possibilité d'étudier la pathologie de la maladie avec une chance réelle
d'inverser les symptômes ou de freiner considérablement l'évolution de la maladie.

La contribution principale de nos recherches est représentée par la possibilité d'utiliser l'imagerie
médicale comme biomarqueur pour déterminer la maladie de Parkinson. L'étude présente plusieurs
aspects, liés au contexte d'utilisation des biomarqueurs pour la maladie de Parkinson et la place
de l'imagerie dans cet environnement.

Notre étude détermine quelles sont les formations cérébrales a�ectées par la maladie, formations
détectables à partir de l'Imagerie par Résonance Magnétique (IRM). Une étude de faisabilité a été
menée pour déterminer si l'information contenue au niveau de l'imagerie est corrélée avec la maladie,
et si l'extraction peut a�ecter cette information. Une fois ces aspects validés, nous étudions un
système pour l'extraction, la fusion et l'aide au pronostic à partir de l'image médicale de type IRM.
Ce système doit être capable de recevoir l'image médicale dans le format utilisé par les cliniciens
et générer comme résultat la valeur de sévérité de la maladie de Parkinson par rapport à une des
échelles utilisées cliniquement pour le diagnostic.

Dans l'étude de la maladie de Parkinson, les cliniciens ont établi que la dopamine, un des
neurotransmetteurs du cerveau, est le facteur principal dans la pathologie de Parkinson. Ce neu-
rotransmetteur est produit par-delà région du Substantia Nigra (SN) dans le mésencéphale. Cette
région n'étant pas très bien délimitée, on étudie habituellement le mésencéphale. Pendant l'étude
de faisabilité, on étudie la corrélation entre cette région - extraite de l'image - et la maladie, en
utilisant le niveau de l'anisotropie. Cette mesure détermine le niveau de la dopamine dans les ré-
seaux neuronaux. Dans ce cas, l'image médicale est la source de l'information primordiale, mais
elle représente aussi les données utilisées pour la détection. Ceci représente une caractéristique
fondamentale du bio-marqueur que représente l'image médicale.

Notre étude utilise une base de données formée par 143 patients : 68 patients détectés avec la
maladie et 75 cas de contrôle. Entre les IRM, les images du tenseur de di�usion (DTI - di�usion
tensor images) sont utilisées dans la maladie de Parkinson grâce à leur capacité de déterminer le
niveau de l'anisotropie. Entre les images DTI, les images écho planaires (EPI), même si caracté-
risées par une résolution médiocre, sont capables de déterminer les faisceaux neuronaux. Le nerf
neuromoteur représente un des faisceaux a�ectés par le manque de dopamine, caractéristique à
cette maladie. Pour le déterminer le niveau de présence de la dopamine, on utilise la tractographie.
Ce processus a une �nesse supérieure si on lui fournit la source et la �n des faisceaux (tractogra-
phie globale). La source est le mésencéphale et une des destinations est le Putamen. Cette région
anatomique est située dans le trajet de la dopamine et elle est traversée par le nerf neuromoteur.

Pour pouvoir utiliser les �bres comme mesure dans la détection de la maladie, nous introduisons
des métriques spéci�ques : la densité et le volume des �bres. En se basant sur ces mesures, on peut
comparer les patients sur l'échelle de H&Y. Pour arriver à ce point, après avoir détecté les �bres et
les avoir évalué avec les métriques évoquées, on les analyse en utilisant une procédure de décision
neuro-�oue. Cette procédure utilise les faisceaux moteurs pour générer un diagnostic et le pronostic
associé, en corrélation avec l'échelle H&Y.

Mots clès : Traitement d'Images Médicales, Analyse d'Images Médicales, Détection

automatique des VOI, Diagnostic, Pronostic, Maladie de Parkinson
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Introduction
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1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Using the medical DTI as biomarker in Parkinson's disease detection and prediction

represents a major challenge for early clinical diagnosis and prognosis. The work presented

in this thesis concerns a systematic algorithm of the use of medical imaging as a biomarker

for this important neurodegenerative disease. We present the feasibility study and the

technical demarche all the way in producing a prototype that puts in practice our theoretical

premises in a translational approach.

Biomarkers o�er information about the disease progression and its characteristics,

elements that are not available at the clinical level, valuable as well for drug development.

For Parkinson's Disease (PD) the need for biomarkers is acute as it can provide an

illustration of the disease on the pre-motor period, before it becomes irreversible. PD

can be diagnosed only after the trembling a�ects the patients, after the motor tract is

a�ected. The pre-motor period is not diagnosable yet. The tremor representing the

motor manifestation of the disease is due to the lack of dopamine, one of the main

neurotransmitters produced by the midbrain structure called Substantia Nigra (SN). Its

loss a�ects the motor tract causing one of the �rst clinical diagnosable symptoms for PD.

Due to the fact that the neurotransmitter does not deliver the signal trough the motor

�bers, it a�ects them and the result of this is the tremor. In these conditions, the relevant

markers for PD are linked to the pathology determining the dopamine production.

The loss of dopaminergic production is often estimated by visualizing the motor func-

tionality or neuromotor activity once the symptoms appear. The heterogeneity of the motor

�bers physiology, as well as the slow pathological progression of PD require markers capable

to detect clinical and pathobiological symptoms for PD detection and progression. Pathol-

ogy studies have showed that by the time these symptoms are installed, at the pre-motor

stage, about 50-60% of dopamine is lost [Marck 2008] and about 80% once this stage is

reached. This dopamine lost is acknowledged when the symptomatic stage develops onto

the clinical phase of the disease and the diagnosis can be given [Today 2009] only at this

level. The need for a biomarker that reaches from the clinical stage into the pre-motor

phase is given by these percentages. The fact that by the time the speci�c symptoms

appear- there are approximately 5-8 years from the disease installation- represents another

justi�cation for early diagnosis e�orts.

Developing a biomarker at the pre-motor stage is entirely dependent by the pathology

information, but the clinical aspect is not validated yet. In this case, the reverse engi-

neering, based on the clinical information and using the pathobiological and physiological

information of PD. The clinical stage can be shifted in time by transfer of information to

an earlier point on the disease development mechanism.
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The main challenge in PD diagnosis is represented by the analysis phase of the symptoms

and markers as several symptoms are common to a few diseases. Due to this fact, �nding

appropriate and reliable biomarkers represents a complex and di�cult process.

The current markers are incomplete due to the lack of correlation between the clinical

features and the pathobiological ones. The imaging is linked to the physiology of each

patient and can provide information at the pathological level. While the clinical aspect

represents a visible manifestation of the disease, the imaging represents a physiological

measure for dopamine loss, constituting the link with the pathology and o�ering a visual of

the PD source. The need for a measurable feature at the physiological level and breaking

the gap between the clinical and pathophysiological level could both be solved by breaking

the semantic gap at the technical level. The imaging information for PD is not currently

considered as a reliable biomarker, due to this gap and the lack of correlation with the

clinical level.

The clinical stage, reached after the motor symptoms installation, is currently diagnosed

based exclusively on cognitive testing. According to their cognitive testing scores, the

patients are placed on a prede�ned scale: Uni�ed Parkinson's Disease Rating Scale or

Hoehn&Yahr (H&Y). This manner of diagnosis does not take into account the information

provided by the images. Performing image analysis and �nding an association between the

e�ect, represented by image speci�c indicators, and PD severity, estimated independently

from the image, determines an inclusion of the medical image in the diagnose decision as

well. Following this new procedure presents the advantage of compounding the cognitive

aspects with the anatomy-physiological ones.

The medical images needed for this study should have high anatomical detail, as well as

speci�c pathology for the disease so that the physiology and the clinical phenotype can be

detected. Magnetic Resonance Imaging (MRI) together with the Computer Tomography

(CT) imaging are currently used in PD. Speci�c CT imaging like positron-emission tomog-

raphy (PET) and Single Proton Emission Computed Tomography (SPECT) are used as

biomarkers providing dopaminergic information at the SN level. From the MRI imaging

there are studies on the functional imaging like Di�usion Weighted Imaging (DWI) as these

functional images are usually used to determine correlations between the physical changes

in the brain and the mental functionalities. Functional MRI (fMRI), due to the dopamin-

ergic dysfunction, highlighted as dopamine transporter binding these images [Dorsey 2006]

show relevant changes on the posterior area of the Putamen.

The speci�c anatomical structure a�ected by the PD pathology and their physiology is

changed and this aspect is revealed by the medical images. Taking the medical images and

proposing their use as a biomarker encapsulates several levels of study. The need for a new

marker among the existing ones, de�nes the gap that needs to be �lled and the additional

information that this new approach brings in relation with the existing diagnosis.

1.1 The need for new markers for Parkinson's Disease

Parkinson's Disease a�ects the population that has, on average, 61 years, even if it begins

around 40 years [Disease 2009]. From this point of view, the continuous aging of the popu-

lation, combined with the actual late detection and the impossibility to reverse or stabilize

the PD evolution justi�es strong concerns for a prediction system. By the time the disease

is detected, the patient has already lost 80-90% of the dopamine cells [Today 2009]. The

treatments are less e�ective after the disease develops. Thus, a prognosis of this disease

could diminish the e�ect of the PD or even reverse it.

The fact that PD is detected only after reaching stage 2 on H&Y scale, rarely stage 1.5,
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the early detection, before the disease is installed or signs correlated with the disease are

hard to determine and prove. In these conditions, detection in early stage for diagnosis and

prognosis is very challenging using just the symptoms. By using early detection, there is a

chance to study the disease and deploy an early treatment for stopping or slowing down its

progression.

The need for these markers is represented by early detection and prediction factors

that are determined by analyzing the markers. The early detection o�ers the possibility to

study the disease development and provide time for the therapeutic treatments. The fact

that the PD severity is expressed as numerical values on di�erent scales adds a value on

the disease. Numerical values representing the disease severity at the image level provide

values from the pathology. The a�ected physiological landscape a�ects the values extracted

at the image level. As these values are a�ected by pathology and physiology, they are com-

plementary to the values on the PD scale, obtained by cognitive testing. Values correlated

with the disease severity on the same scale as the clinical diagnosis provide a global and

more complete view of the disease.

The di�erence between susceptible individuals and normal cases - control cases - provides

the sensitivity measure for markers, while the true idiopathic PD cases form the similar dis-

eases provide speci�city. Parkinson's Disease is a neurodegenerative a�ective disorder that

can be confounded with other disease like the essential tremor, Multiple System Atrophy

(MSA) and Progressive Supranuclear Palsy (PSP) [Mitchell 2004].

The biomarker makes the di�erence between the Lewy body formation, neural degen-

eration or dopamine depletion and/or Parkinson's Disease. The main problem in PD is

the clinicopathological correlation, not relining on the pathology to describe the clinical

development of the disease. The confusion with other diseases is encountered at this point

where the behavior of many diseases is similar, thus the diagnosis based on this pathological

elements is just symptomatic, not a�ecting the disease if it is not the correct one.

1.2 Thesis structure

Following the idea of using the medical imaging as biomarker, the thesis represents a com-

plete study surrounding this goal. There are several points of view involved in this study:

the scienti�c perspective, including the technicalities and methods involved in achieving the

main purpose, and the clinical one, with the medical relevance.

The thesis is structured in three parts concerning the context of PD biomarkers, the pos-

sibility that medical imaging o�ers as a biomarker and the contributions. Medical imaging

contains not only anatomical information, but also the pathophysiology of the disease at

the tissue level and this aspect is the one that our approach aims on exploiting and bringing

it to the clinical level for early diagnosis and prognosis.

For this purpose there are several aspects that we are studying, not just the context

of PD biomarkers, but the medical images as well. As they provide the information that

needs analysis to be used further, the context of the medical images is represented by their

characteristics and their ability to provide the pathophysiology needed. A feasibility study

is needed to determine if the medical imaging contains all the information that should

provide and that this information can be used to re�ect the PD severity.

The technical approach together with our proposed methods is created in close relation

with the feasibility study and its conclusions. The medical premises that link the patho-

physiology with the clinical condition contribute to our approach. Taking each chapter in

consideration we are presenting the main ideas that are considered next.

The main elements concerning the context of PD biomarkers, di�erent types of biomark-
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ers and the criterion for de�ning new ones are presented and de�ned in chapter 2. After

de�ning the meaning of the terms and the existing PD biomarkers we develop the standpoint

for the current place of biomarkers on the PD pathology relative to the clinical detection.

Following the pathology development, we de�ne the main landmarks for physiology in cor-

relation with the PD stages.

As we are proposing the medical imaging as speci�c PD biomarker, we de�ne the current

context of head medical imaging with emphasis on the speci�c properties highlighted by the

PD physiological changes. The way medical images are used in PD detection reveals the

important anatomical area, those that are a�ected by the disease pathology. The speci�c

images currently used in PD study are presented as well.

In chapter 3 we present our feasibility study in the context of the PD pathology and the

disease development. The premises for this study, the theoretical hypothesis determining it

and the main aspects of the feasibility are presented, together with the test approach and

parameters. This study determines parameters for image handling and challenges for patient

management. Facing the variability and de�ning algorithms from digital image processing

and analysis domain for the pre-processing level of our study de�nes the transition from

the feasibility study to data processing.

For the processing level we de�ne the main elements in chapter 4. The context provided

by the image on to the feasibility study and the pre-processing level prepare the means for

information extraction. The proposed methods from the image processing and analysis

perspectives are presented in relation with the current technical landscape, highlighting our

contribution. Evaluating the quality of the extracted information provides the relevance for

the disease.

For the analysis of the extracted information and its exploitation, the approach is pre-

sented in chapter 5. As the clinical level is the �nal aspect where the biomarker is mapped,

the system is de�ning a Computer Aided Diagnosis (CAD) system that determines if the

information provided by the image can de�ne the situation of the patient. The context for

the analysis part is provided by the modalities from the computer vision domain linked to

fuzzy networks on the technical level and the currently used scale for the disease on the

clinical level.

The results of the study are presented in chapter 6. The presented methods with regard

to existing ones are evaluated, but the results for the entire study are those regarding the

diagnosis and prognosis. These results determine the validity of the medical image as

a biomarker. The test conditions and machine requirements are contained in the same

chapter.

The �nal chapter 7 deals with the scienti�c and technical conclusions. Using medical

imaging as biomarkers brings into the bioinformatic area signi�cant contributions for the

PD. The clinical relevance of the study determines its relevance on the medical �eld as well

and it is presented in the same chapter. Future research areas and possibilities to follow

this study are presented with the scienti�c perspectives at the end.
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A
s we are proposing the use of structural medical images- the DTI (Di�usion Tensor

Imaging)- as biomarkers, we are �rst making an analysis of these type of information,

de�ning them and highlighting elements that are speci�c for PD. This disease represents a

neurological disorder, a chronic neurodegenerative disorder [Mitchell 2004] with pathology

and evolution in time di�cult to study and master.

The Biomarkers De�nition Working Group refer to the biological markers (biomarkers)

as characteristics that are objectively measured and used to determine not only the normal

biological process, but also pathogenic processes or pharmacological response to treatment

[Marck 2008].

The markers represent measures of manifestation of di�erent stages of the dis-

ease that trough analysis are converted in values representing stages of disease. An ideal

biomarker should show changes at the pathological or clinical level and measures must be

reproducible, as well as cheap, non-invasive and quick. These markers include not just de-

tecting the disease vulnerability, but also the pre-motor symptoms like olfactory and auto-

nomic disfunction, depression, sleep disorder or neurophysiological impairment [Berg 2008].

Changes in Substantia Nigra (SN), anatomical region situated in the midbrain area, that

presents hyperechogentricity, can be included among the pre-motor symptoms. This as-

pect is currently studied using the Computer Tomography (CT) images. This anatomical

region is the producer of dopamine and the changes in its physiology are due to the fact

that the neurotransmitter is no longer produced. Symptoms like olfactory dysfunctions or

cerebrospinal �uid can be correlated with Alzheimer's disease as well. These two neurode-

generative diseases have common markers, but PD clinical diagnosis is made only after the

motor symptoms are installed.

The distinction between biomarkers in general and the surrogate markers resides at the

granularity level. Surrogate markers are a subset of biomarkers, just like the clinical end-

points are. Surrogate markers are tested in several interventions, can be used as clinical

meaningful validation or as clinical end-point and represent a subset of biomarkers. The
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clinical end-points represent indicators of the way the patient is feeling and they are

used in the diagnosis process. The biomarkers provide values for the symptomatic and pre-

symptomatic manifestations of the disease, providing surrogate markers and demonstrating

the clinical e�ciency.

The current markers target the risk for the disease or its progression and can be used

for determining the disease stage or the e�ect of the medication. The pre-motor stage can

be illustrated by using the risk evaluation markers and after the onset of the symptoms

the diagnosis markers can be further used. The risk markers are the predictive factors

and the diagnosis ones can be used as response to therapy markers. Clinical diagnostic

biomarkers can be risk markers that are used to evaluate subjects with clinical mani-

festation of the disease, but they do not relay on clinical features based on the clinical

manifestation of the disease [Marck 2008]. Other biomarkers like blood, serum and plasma,

cerebro-spinal �uid (CSF) and urine have been studied to determine systemic metabolic

dysregulation [Graeber 2009].

2.1 Existing biomarkers for PD

The ability to predict the pathology - diagnose - from clinical phenotype is di�cult due to

the lack of correlation. The biomarker linked to the pathology does not include the clinical

information as well. The idea is to have both pathology and clinical information evaluated

by a biomarker. Starting from the primary purpose of the biomarker, the complementary

information is acquired by correlation and/or analysis. There are biomarkers that investi-

gate the progression of PD during the pre-motor period and those that are used after the

clinical phenotype is established, after speci�c symptoms are detected and the diagnosis is

set.

For PD there are several markers, clinical markers and biomarkers [Marck 2008]:

• Clinical Markers

� Cognition

� A�ective: depression, apathy, anxiety

� Autonomic: constipation, bladder, sexual, cardiac

� Olfaction

� Sleep: Rapid eye movement Behavioral Disorder (RBD)

� Skin

� Motor analysis

� Speech

• Biomarkers

� Imaging Phenotomics

∗ SPECT/PET: dopamine, dopamine transporter (DAT), F-dopa, vesicular

transporter(VMAT)

∗ SPECT/PET: nondopamine, �uorodeoxyglucose (FDG), metaiodoben-

zyguanidine (MIBG), targets for norepinephrine(NE), 5-hydroxytryptamine

(5-HT) A2a, nicotine

∗ MRI: spectroscopy

∗ Functional MRI
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Biomarker Imaging Technique Investigators

Cerebral blood �ow (CBF) MRI / Arterial spin labeling Hoge R

Directed molecular probes PET Optical Weissleder R

Dopamine transporter

(DAT) density
SPECT (using I-123 altropane)

Fischman A

Halpern E

Sahani D

Dopamine binding

potential
SPECT (using I-123 altropane)

Fischman A

Halpern E

Sahani D

Dopaminergic

neurotransmitter activity

fMRI

PET

Fishman A

Livni E

Rosen B

N-acetylaspartate (NAA)

levels over time
MRS

Gonzales RG

Jenkins BG

Table 2.1: Parkinson's Disease imaging biomarkers from Massachusetts General Hospital/

HST - Center for Biomarkers in Imaging [Center For Biomarkers in Imaging 2007]

∗ Nigral ultrasound

� Genetics

∗ Synuclein, LRRK2

∗ Parkin DJ-1, Pink 1

� Cerebrospinal �uid (CSF), blood ( Proteomics, Transcriptomics, Metablomics)

Analyzing the existing clinical markers and biomarkers, their area of in�uence and the

information de�ning them, we perceive the need for well-de�ned quantitative biomarkers. In

clinical and preclinical stages great e�orts have been made into Translational Science (TS)1

so that the passage of compounds into clinical development can be done [Jensen 2010].

The biomarkers are subtler and represent the pathological dimension of the disease that

determines physiological changes detected as symptoms and manifested as clinical markers.

Diminishing the path to the clinical acknowledgement for PD represents the main purpose

in using biomarkers.

When talking about new possibilities for biomarkers, Mitchell and al. [Mitchell 2004]

considers three categories: imaging as biomarker, clinical testing procedures and biochem-

ical together with genetic tests. We will discuss just the �rst case, as we do not intend in

using the other two categories. The medical imaging currently used as biomarkers for PD,

according to the Center for Biomarkers in Imaging (CBI),2 are presented in Table 2.1.

Imaging biomarkers are generally used as surrogate endpoints as they are able to de-

termine the disease on the pre-motor state, o�ering an alternative to the current trial

endpoints. Surrogate endpoints represent measurements that can be used in clinical trials

for evaluating either the therapy, or the disease level. In table 2.1 there are two separate

columns for Biomarker and the Imaging technique which puts the imaging on the position

of supplier of information where the actual marker, the one correlated with the disease, is

the one followed at the image level. As presented in �gure 2.1, there are two separate levels

where the biomarker and the medical image are placed: the information and the source

1Biomarker Commons http://biomarkercommons.org/news/imaging-biomarkers
2Center for Biomarkers in Imaging: http://www.biomarkers.org/NewFiles/biomarkers/diseases.html

accessed in November 2010

http://biomarkercommons.org/news/imaging-biomarkers
http://www.biomarkers.org/NewFiles/biomarkers/diseases.html
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layer. Using the medical image as both the source and the evaluated information makes

it a biomarker. The fact that medical image is used as extracted information directly in

the clinical process eliminates one level of analysis. In this case the marker is not based on

the clinical manifestation of the disease. This aspect integrates medical imaging among the

clinical diagnosis markers and/or clinical end-points.

Figure 2.1: Informational layer and the biomarker relative to the clinical diagnoses process

Starting from the representation of the pathology progression in time by Michel et al.

in [Mitchell 2004], we present in �gure 2.2 the physiology changes due to PD development

and manifestation. As the diagnosis detection can be done only after the dopamine loss

reaches an irreversible level, there is a small time gap, when the diagnostic can be moved

towards the pre-motor area, space �lled by the clinical diagnosis markers. Studying the

speci�c elements that determine the speci�c symptoms there is the possibility of improving

even more the diagnosis onto the non-speci�c symptomatic area by pushing the analysis

of speci�c symptoms to an earlier point and changing the area of the clinical end-points

as well. There is a need to determine a reliable biomarker without relying on symptoms.

In this case, the physiological changes should be the ones determining the measure of the

marker in the pathological progression of the disease.

The need for biomarkers detecting the early stage of the disease is not related to the

pathology of PD, but to the motor symptoms as currently the diagnosis is set after cogni-

tive testing on the post-motor area. The prediction factor is linked with the non-speci�c

symptoms and should make the di�erence between PD patients and other diseases by tak-

ing into account a speci�c marker. In this case the marker can detect pre-symptomatic

manifestation of the disease and is regarded as risk evaluation markers.

The time-line from �gure 2.2 presents 5 years until the symptoms arise, after the pathol-

ogy onset, and additional 2-3 years until the diagnosis is set. These time gaps represent the

target places for new biomarkers and diminishing them or reversing the disease in one of

these time spaces by treatment in early stage represents the �nal aim of biomarkers. Repre-

senting the PD path after the onset of the disease emphasizes the clinical and pathological

stages. The progression of PD in time starting with the onset of the pathology (�gure

2.3) expresses a direct physiological progress that is detected by the existing biomarkers.

The diagnosis set after the motor symptoms are detected, based on the cognitive testing,

denotes a late attempt to control the manifestation of the disease.

2.1.1 Current usage of Medical imaging

In vivo imaging is currently used for PD as it is non-invasive and follows the displacement

of dopamine transporter (DAT). This medical imaging is used later on when following the

e�ects of drug development, to determine the e�ects. It can follow the disease progression,

but it has potential, as it can be combined with symptomatic dopaminergic treatment and

can o�er an advantage to simple markers. The two main in vivo imaging modalities used
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Figure 2.2: PD pathological progression in time with the physiological changes

for PD with biomarkers are the Computer Tomography (CT) and the Magnetic Resonance

Imaging (MRI).

Computer Tomography (CT) images are obtained using a tomograph, which produces

an X-ray beam that parses the 3D volume of the body in a process known as windowing.

From these type of imaging the Proton Emission Tomography (PET) and Single Positron

Emission Computed Tomography (SPECT) are the ones that presently show potential as

biomarkers.

Currently just the functional imaging are used in PD diagnosis and treatment, because

they posses the attributes to be used as such. PET and SPECT encapsulate the cerebral

blood �ow, one of the biomarkers with the highest potential in PD. This type of medical

imaging can highlight the decline in neurotransmitter functionality. While PET provides

better resolution, SPECT is more accessible but harder to validate, it is speci�c to certain

conditions and it is not reliable. The pre-symptomatic PD detection using these images

is not possible yet, but it is currently studied [Mitchell 2004]. These image modalities

have great variation among subjects, but the PET provides up to 70% agreeing among the

imaging and the clinical diagnosis for di�erentiating the PD patients form those with other

diseases and similar manifestation. The Caudate and the Putamen signals on these images

are used for di�erentiating the clinical diagnosed strationigral degeneration for PD patients.

Limitations for the functional imaging are present among the normal cases and the disease

a�ected ones where the image cannot di�erentiate them.

Magnetic Resonance Images (MRI) are used in radiology for their detailed visualization

of the internal structure of the human body. As one of the versatile medical imaging

modality, MRI has the property to provide both the metabolic and functional aspects of
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Figure 2.3: The Pathological development of PD

human body tissue, o�ering biophysical parameters that can be used as biomarkers. The

contrast o�ered by these types of images is able to make the di�erence between the soft

tissues inside the body, especially in neurology, providing the physiology of di�erent neural

tissue types. Having the physiological information that supports the speci�c pathology,

combined with the high resolution of the images provide necessary elements for using MRI

as biomarkers. There are several types of MRI scans that di�er depending on the protocol

parameters and techniques used for acquisition.

T1 weighted use a gradient echo (GRE) sequence with short echo time (TE) and short

repetition time (TR)

T2 weighted use a spin echo (SE) sequence with long TE and long TR

Specialized MRI scans are based on more complex techniques for acquisition of images,

depending on the application area:

• Di�usion MRI represents the di�usion of water molecules at the tissue level - is

able to acquire several types of imaging types: di�usion weighted imaging (DWI),

echo planar imaging (EPI)

• Fluid attenuated inversion recovery (FLAIR) is based on the inversion-recovery

pulse sequence that has null signal from �uids

• Functional MRI (fMRI) is able to measure signal changes that represent neural

activity in the brain

There are other types of MRI sequences, as well as other specialized MRI scans that combine

techniques in order to obtain better images. Currently each of the MRI sequence responds

to a certain need from the medical domain, being prede�ned for a certain type of application,

or a certain body part and/or disease speci�c. For PD usually the functional MRI is used,

due to the information provided for the motor tract, or the di�usion MRI, as it contains

the anisotropy information.

The motor tract is one of the indicators of PD that can reveal the pre-symptomatic

physiology as well as the pathology progress. Another medical imaging used for study of

the pre-symptomatic phase is the transcranial ultrasound. In these medical images the

analysis of SN physiology and the Putamen one from the PET image are the methods

currently used to complete the research. In [Marck 2008] the hyperechogentricity of SN is

studied by using another medical imaging, the nigral ultrasound. The scintigraphy, more
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precise the cardiac metaidobenzylguanidine (MIBG), provides 89.7% sensitivity and 94.6%

speci�city among the PD and multiple system atrophy (MSA) patients based as well on the

same anatomical area.

Lateral Substantia Nigra (SN) pars compacta abnormalities can be detected in high �eld

strength MRI even in early PD [Graeber 2009] cases, corresponding to known anatomical

distribution for the dopamine produced.

There are also several dopaminergic tracers like F-dopa, DAT ligands and the vesicular

transporter (VMAT2) that determine the PD a�ected patients. These studies depend

on the accuracy of the DAT imaging or Datscan, used as a diagnostic marker in Europe

[Marck 2008]. Another imaging modality form the DAT nomenclature is currently studied.

Even if the results reveal that the distinction between di�erent PD types and similar diseases

cannot be made yet, the Fluorodeoxyglucose imaging is viewed as a technique with high

possibilities in this area.

2.2 New possibilities for biomarkers

For introducing new biomarkers and validating them we need to analyze their potential

and their correlation with the disease, in order to test their reliability and reveal their new

contribution in both pathological and clinical context. For a new marker to be valid there

are several aspects that must be ful�lled [Marck 2008]:

• Meaningfulness/Relevancy of the marker to the disease

• The performance characteristics of the marker

• The degree of generalization of the marker

The �rst criteria is linked to the disease in pathology and clinical relevance. A correlation

on the disease severity and the marker values expresses a relevant estimation of the pathol-

ogy of a subject. When taking the performance of a marker into account, the accuracy

accomplishments are analyzed. Any marker should be able to perform on all patients and

in any conditions, providing the generalization needed. This aspect is a�ected by the e�ect

of disease, age, sex, medications and race or environment. The in�uence of any of these

aspects on the biomarker should be minimal.

The CT image is used for PD due to the high detail provided for SN tissue and the

MRI, due to the functionality information, because only the functionality is able to capture

the physiopathology manifested by trembling. This functionality is able to bridge the gap

between the clinical aspect represented by the tremor and the pathology at the motor tract

level. The pathology, even if it is not measurable, determines measurable changes at the

functional level, expressed by the anisotropy values on the MRI images.

The usage of medical imaging as biomarker delineates a complex process with several

informational levels. An important aspect of this process is the validation phase. In con-

cordance with the three requirements for a biomarker presented earlier, our approach has

three main tasks:

• Clinical marker(s) that provide the biomarker with meaningfulness

• Pathology highlighted at the image level, representing the physiological change

• Correlation function with the PD severity - performance and generalization
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Using these steps we might be able to bridge the gap between the clinical markers and the

pathophysiology by using the medical image at the neural tissue level. Some of the widely

accepted markers at this level include MRI images for their capacity to distinguish abnor-

malities. The DTIs are used for the olfactory tract studies, in addition to the volumetric

ones. The CT images like the SPECT and PET imaging are used for visualizing perfusion

abnormalities and amyloidal burden [Berg 2008].

2.3 Head Medical Imaging used for PD

From all the clinical symptoms used as markers in neurodegenerative diseases, the trembling

is one of the speci�c symptoms, making the distinction between other neurodegenerative

diseases and Parkinson's Disease. The symptoms are produced by pathology changes visible

at the image level as physiological abnormalities. The neuromotor tract is the one a�ected

by the pathology in this case as the tremor is generated by abnormal changes at this level.

The PD research in this case is concentrated on the head neuroimaging.

The head imaging contains the clinical markers as part of the pathology, determining

changes in the physiology of several anatomical structures involved on PD development.

The detected abnormalities on the physiology of these structures, the possibility to extract

concluding information is to be tested and in the case of a detected correlation, a validation

is mandatory. The extracted features could be a�ected by the exactitude of the process, the

image resolution and/or the visual environment. Under these conditions the pathological

values together with the disease correlation could be biased.

From the head medical imaging, the structural computerized tomography (CT), as well

as the magnetic resonance imaging (MRI) are both used to supervise PD. According to

[Seibyl 2005] there are three ways of using imaging for PD: neuroimaging for disease detec-

tion (diagnosis), monitoring the progression of the disease and evaluation of treatment. The

CT and MRI imaging, together with other medical imaging are usually stored in Digital

Imaging and Communications in Medicine (DICOM) format.

By processing the medical image we acquire supplementary speci�c information on each

image, but medical standards, like DICOM, include more information in a �le than just

the usual general standard image. There are several medical imaging standards, providing,

together with the digital image, some basic information about the patient and the protocol

used to acquire the image.

Digital Imaging and Communications in Medicine (DICOM) is a standard

used for managing medical imaging. This standard has its own �le format de�nition and a

network communications protocol [1752 2008].

From the technical point of view, the relevance of the imaging format resides in the

automatic detection of the volumes of interest and the management of the medical images

for the �ber growth algorithm. For the medical image processing part working with the

DICOM format implies knowing the speci�cations of this standard. This medical image

format consists of a header �le and the image information encapsulated in the same DICOM

�le. The header �le contains information about the patient and the technique used for

acquiring the image, as well as some characteristics.

Another �le format used for medical imaging is called Analyze, but in this case for

each instance of a medical �le two �les are created: one containing the header information

(*.hdr �le) and the other containing the image data (*.img) �le. The DICOM �le format has

the advantage of compressing the �les in order to reduce the image size [University 2008]

[1752 2008]. The header �le for this protocol does not contain as much information as

the DICOM one: it does not have any information regarding the acquisition method and
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protocol parameters (e.g. angulations for the acquisition plane, the series type for the image,

the slice number, the di�usion direction).

The DICOM header is contained in the �rst 794 bits of the digital image. This header

contains the image characteristics, as well as image information about the parameters of

the scan. In this �le we have the elements 0002:0010 encapsulating the information about

the structure of the image data described by the 'Transfer Syntax Unique Identi�cation'.

The image characteristics are stored for some color images (e.g. RGB) on 3-samples per

pixel (one each for red, green and blue) and the monochrome images store on only one

sample per image. For each image there are 8-bits (256 levels) stored or 16-bits per sample

(65,536 levels), even if some scanners save data in 12-bit or 32-bit resolution. A RGB image

that stores 3 samples per pixel at 8-bits per can potentially describe 16 million colors (256

cubed) [1752 2008].

These characteristics determine the format of the DICOM header, providing the physical

characteristics of the images and the contextual information regarding the patients, used

for statistical purpose.

2.3.1 The current usage of medical imaging in PD

PD indicators regarding the speci�c pathology of the disease involve clinical markers and

biomarkers. In vivo imaging, especially on the nigrostriatal dopaminergic system, is able

to reveal progressive dopaminergic neuron loss in PD. The study presented in [Marek 2009]

uses [123I]β −CIT or [18F ]Dopa imaging to determine the PD progression. Positron emis-

sion tomography (PET)/[18F ]Dopa and single proton emission computerized tomography

(SPECT)/[123I]β−CIT are widely used to determine clinical trials and to measure striatal

dopamine activity. According to this study, dopamine lost can be detected using imaging

even before the detection of the symptoms. Dopamine transporter imaging using PET and

SPECT has been used to determine progression of PD at the dopaminergic neurons level,

correlated with clinical values on UPDRS. These longitudinal studies using medical imaging

showed only minimal correlation, due either to medications or the fact that PD was in an

early stage. In this case it is susceptible to a�ect the UPDRS measurement because the

disease does not progress linearly. Another study, using the same imaging, shows that nor-

mal striatal from the imaging can be used to make the distinction between the PD patients

and those with similar symptoms [Piccini 2004]. Positron emission tomography (PET) and

single proton emission computerized tomography (SPECT) are mainly used to highlight

dopamine transporters and dopa-decarboxylase in the Putamen area [Mizuno 2010].

Using clinical markers the cognitive aspects are usually tested with the current PD

diagnosis system. On the olfactory tract, the studies reveal a correlation with the disease

[Scher�er 2006]. In this study the di�usion weighted imaging (DWI) and the trace di�usion

tensor (Trace D) are used because of the di�usivity aspect that o�ers capability to determine

the structural integrity of the nervous tissues without prior study of the same patients.

The voxel clusters that represent the olfactory tract are correlated with the PD severity,

as the di�usivity for the a�ected cases is higher compared to the controls. Using fMRI to

investigate brain activity related to the olfactory process is presented in [Westermann 2008].

This study revealed that PD patients even in early stage of the disease can be detected by

using this imaging technique.

The midbrain is another clinical marker that is the subject of several approaches, as it

contains the SN, perceptible at image level as well. The SN area, producer of dopamine,

is one of the most studied PD biomarkers. The midbrain pathology detects dopaminergic

neurons lost from SN area. The homogeneity on this area studied using fMRI technique

combined with the dopaminergig responses from the PET imaging [Duzel 2009]. Another
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imaging method, the Di�usion Tensor Imaging (DTI) has been considered in studies on

mice concerning the same area, the SN, only to determine that indeed a correlation with

the disease exists, even for early cases of PD [Vaillancourt 2009]. These studies acknowl-

edged as well that fractional anisotropy represents another important marker of the SN

transformation due to PD evolution, discovered with post-hoc analysis.

The imaging represents a non invasive method backed up by the post-hoc study. Corti-

costriatial connections have been studied in primates with applicability in humans to prove

that the DTI images are able to track the neural �bers and reveal connections on humans

as well [Lehericyr 2004].

2.3.2 Functional imaging vs. Structural imaging

Functional imaging is used because of its ability to disclose the neurotransmitter function,

the metabolic process and the immune responses so that PD pathology can be determined.

PET, SPECT, magnetic resonance spectroscopy (MRS) and functional magnetic resonance

imaging (fMRI) are the functional imaging used currently for PD study. The neurochemical

alterations and chemical connectivity are detectable on functional imaging. The nigraostra-

tial integrity in particular is studied using these type of PD imaging providing meaningful

insights of the pathology of the disease regarding both motor and non-motor dysfunction

from the striatial dopaminergic transmission [Nandhagopal 2007].

The structural imaging on PD is linked to the brain anatomy associated

with the disease progression, volumetric and molecular composition of brain tissue

[Parkinson's Disease 2010]. From this type of imaging the ones used for PD are the MRI, ul-

trasound and optical coherence tomography (OCT). As structural changes are not currently

detectable on PD patients, these types of imaging are not used as biomarkers.

One of the MRI imaging technique that is able to provide structural information, to-

gether with anisotropy and di�usivity is the Di�usion Tensor Imaging (DTI). The DTI is

used in the study of the brain as it o�ers the possibility to examine areas of the brain at the

axon level. The water molecules in the biological tissues have special comportment. The

DTI image technique is a medical image type where the di�usion of the water molecules is

used to follow the neural impulse through the brain tissues. Following the water molecules

in several directions provides an image of the impulse propagation in those directions. The

more directions followed, more complex the image of the neural �bers conducting the neural

impulse is.

Taking into account these functional aspects that follow the physiology regarding the

neural impulses, the DTI provide the information necessary to follow the dopamine �ow for

the motor tract. In this manner, we can study the pre-motor manifestation as well for the

mild cases, as the dopamine is lost up to 50% until the speci�c symptoms are detectable.

This lost is discernible at the neural level.

2.3.3 Di�usion Tensor Imaging (DTI) speci�city

Naturally the water molecules do not have a regular movement, but at the tissue level, the

di�usion of these molecules can be anisotropic. Due to the fact that the axon of a neuron

does not usually cross a myelin membrane, the water molecule will be di�used along the

neural �ber. Using this propriety and by analyzing the di�usion in di�erent directions, the

main neural �bers can be detected by tractography. There are di�erent types of DTI scans,

depending on the di�usion parameters following di�erent acquisition protocols.
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2.3.3.1 DTI sequences characteristics

Even though all the DTI images are based on di�usion, they each have speci�c character-

istics. The fact that each DTI scan has a di�erent purpose, supplying us with di�erent

characteristics that can be combined and can complement each other provides a more ac-

curate analysis contributing on PD marking.

Figure 2.4: Echo planar axial

2D image example

The Echo Planar (EPI) sequence provides a vol-

ume image for each di�usion direction. These DTI im-

ages have been generated using a value for B0=800 and

several di�usion directions compose for each direction a

volume image. The B value is used for changing the level

of sensibility for di�usion - di�usion weighting value (e.g.

standard value for adults is 1000 and for children is 500)

[Rorden 2008].

The di�usivity is computed in one direction at the

time for all the directions used in the acquisition protocol

(for all the di�erent gradients). DTI images use tensors

for expressing the direction for the di�usion. The tensor

is de�ned using three directions that generate eigenvec-

tors and eigenvalues. Working with more di�usion direc-

tions, determines better emphasized features, but in this manner, noise can be induced

more easily among the features and the trust degree in the extracted data is diminished

[Curran 2005].

By using these images the anisotropy and di�usivity values can be computed. The mea-

sures for these characteristics are represented by the Fractional Anisotropy (FA) and the

Apparent Di�usion Coe�cient (ADC). The FA provides the value of the water di�usivity,

making the distinction between tissues. The ADC represents the directionality of the dif-

fusion and it reveals the �ber orientation inside the brain. These values are computed for

each volumetric image that has been segmented into Grey Matter (GM) , White Matter

(WM) and Cerebro-Spinal Fluid (CSF).

(a) FLAIR (b) T2

Figure 2.5: Axial slice of 2D FLAIR in 2.5(a) and T2 in 2.5(b) examples

Analysis and processing for FLAIR imaging (e.g. 2.5(b)) is usually performed for

suppressing the CSF in multiple sclerosis (MS) analysis.
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T2 DTI overlay and T1 imaging sequences have a high level of detail and are usually

used by the neurologists in the diagnosis process. The acquisition process in this case is the

same one used for the Axial FLAIR images (e.g. 2.5(a)). When collecting the data from

the scanner, turning the gradients to their maximum value generates a more accurate image

but it can introduce eddy currents as well. These currents manifest as distortions in the

image acquired by the scanner [Rorden 2008]. Computing of the FA value must take into

account the motion e�ect induced by these currents and in order to overcome the e�ect,

eddy currents correction function is needed.

As the DTI images are characterized by their water di�usion anisotropy in the tissues

and by combining the data from the images taken in several directions (the ones generated

by the tensor values) we can compute the FA and ADC and construct the neural �bers.

Among the DTIs that are a good source of information, the EPIs with the tensor information

provide a good illustration for neuromotor study.

2.3.3.2 Echo-planar images(EPI)

Figure 2.6: EPI and FA example images for the same patient, highlighting the Putamen

contour due to the dopamine �ow on the FA image.

From the DTI images the EPIs (Fig. 2.3.3.2) are among the ones with the lowest

resolution. The advantage of this type of DTI is that they contain the tensor information

as matrixes, giving the actual orientation of the water �ow de�ning the brain �bers.

The tensors are obtained as a result of water di�usion on the neuronal �bers and they are

stored as matrix representing the di�usion directions. This information is able to provide

the di�usion direction and the anisotropy values stored as tensor values. To make use

of this information, limiting the value of the anisotropy for noise elimination represents

a solution. The tensors are computed using the di�usion directions and the B0 image as

ground truth. Serving as directional-related indices, the tensors o�er information regarding

the angle between the current location of a �ber and the possible evolution of the same

�ber.

This type of image is not appropriate for the anatomy extraction and analysis, but the

tensor and anisotropy values stored represent the bottom line of �ber reconstruction the

source for processed FA and ADC images.

Fractional Anisotropy images (FA) result from the computation of the anisotropy level

for each voxel on the EPI image s(Fig. 2.3.3.2). They contain not only the anisotropy
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values, but also the color code for it. This type of image represents the di�usion direction

inside the �bers. Because of that, the Putamen area, one of the targets for the dopamine

�ow, is well de�ned and stands out well contoured with high anatomical detail.
The values computed for FA (equation 2.2) take into account the λ value that represents

the eigenvalues determined from the di�usion tensor vectors [Facon 2005]. This value is
expressed using the ADC value from equation 2.1.

fADC =
λx + λy + λz

3
= λ (2.1)

where λx, λyandλz represent the eigenvalues computed from the x, y and z tensors on these direc-
tions.

fFA =

√
3

2

√
(λx − λ)2 + (λy − λ)2 + (λx − λ)2

(λx
2 + λy

2 + λz
2)

(2.2)

The formulas of these parameters represent standards from the di�usion point of view.

By computing the value of each of these parameters at the voxel level, we obtain the FA

and ADC sequences (see Fig. 2.3.3.2). In the case of equality on all directions for the

value of the FA, a low anisotropy is revealed and if its value is produced by a high level in

certain directions, a high anisotropy is present. The movement of the water protons and

their di�usivity at the voxel level is determined by the ADC value.

2.4 Conclusion

Imaging biomarkers are usually used as surrogate endpoints and, to date, they have limited

utility in clinical trials and practice. Although they are very promising, they do not ac-

commodate the preclinical problems. In this situation, the medical imaging currently does

not constitute an alternative to the current clinical procedure. The fact that the imaging

biomarkers o�er the prospect of more e�cient preclinical studies and clinical trials denotes

one of the motivations in studying them.

The experts present at the Radiological Society of North America (RSNA) sponsored

Imaging Biomarker Roundtable envision that by 2025 imaging biomarkers could be inte-

grated into clinical practice [Radiological Society of Norh America 2009]. Concentrating on

prognosis, rather than diagnosis within the imaging biomarkers, this approach designates

as one of the needs in the area, together with the need for a standardized system for new

imaging biomarker validation and evaluation.

The need for specialized hardware and/or software for image biomarkers management

illustrates another point discussed at the 2009 RSNA meeting where the �nal conclusions

included: a collection of imaging biomarkers integrated into clinical practice and trials,

new imaging biomarkers, a repository of biomarker images and an infrastructure for both

validation of the biomarkers and future development.

We propose using the medical image as biomarker by itself, not as a source to follow on

the medical image one of the existing clinical biomarker, but using its own information as

a tool or as a comprehensive valorization of the physical or surrogate markers. DTI have

not been used even as surrogate markers in PD, just to determine the level of anisotropy.

For an imaging biomarker to be successful it must be linked to the disease that is

targeting, to provide an accurate measurement that is reproducible and to be able to be

used in clinical trials [Smith 2003]. This represents our next step for proposing the DTI as

a PD biomarker: correlation with the disease, measurement of the image provided features

and validation on a consistent database.
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C
urrent PD biomarkers make use of the medical image for analyzing de-

tectable symptoms of PD. Analyzing the pathophysiology of the disease, we propose

a new approach by exploiting the information from the medical image as PD marker. The

current chapter proposes a feasibility study to determine three main aspects:

• Does the medical imaging contain the pathophysiology needed by PD detection ?

• Can the PD physiology be extracted from the medical image level ?

• Is there a correlation between the extracted physiology and the clinical scale ?

The �rst aspect is linked to the capacity of medical imaging to illustrate the physiology

changes speci�c for PD. Speci�cities of medical image can provide these aspects. The

PD physiology, even if present and targeted by one of the medical image modalities, should

be exploitable, as we need these features extracted for analysis. From another standpoint,

the physiology, even if extractable from the medical imaging, is relevant only if correlated

with the disease severity. This correlation at the feature level is the �rst hint that the

information is capable to express the pathophysiology.



20 Chapter 3. Applicability of medical image as biomarker

For establishing the possibility to use medical imaging as biomarker, these evaluation

steps provide the circumstances for it. All the elements should be applicable independent of

the subject and/or speci�cities of the patient, repeatedly and reliably. Therefore, including

a test, unbiased by the speci�cs of the patients, represents another aspect of the feasibility

testing.

3.1 Premises that determine our approach

Considering the existing biomarkers with their capabilities and �aws, introducing a new

biomarker requires an analysis of the possibilities and the coverage of the theoretical aspects

that back up the study. For PD, the theoretical aspects are linked to the speci�c pathology

and anatomy-physiological aspects surrounding the studies linked to the disorder.

As presented in the PD analysis in the previous chapter, the dopamine lost determines

physiological changes after the PD onset. Thus, the study of this physiological change can

be used as a marker to determine early clinical diagnostic of the disease. In PD, there is a

relatively poor dependency between the degeneration of the dopaminergic nigral cells and

the clinical phenotype. This aspect does not permit the direct usage of a dopaminergic mea-

sure as biomarker. A measure derived from this degeneration and liked to the symptomatic

process can be used in correlation with the clinical diagnosis. This correlation, between the

clinical established diagnosis and the possible biomarker has to be proven �rst.

Taking a backward approach and considering the causes of the physiological deteriora-

tion and equally the e�ects that they produce by translation onto speci�c PD symptoms,

we propose the approach presented in �gure 3.1. For determining the early development

of the pathology, we are analyzing the process that leads to the clinical decision. As the

speci�c symptoms causing the diagnosis are detected on the motor stage, the speci�c symp-

tomatic area of the pathology is reached once the motor tract is a�ected. This physiological

process starts much earlier as its e�ect is only detectable when most of the dopamine cells

are lost. Detecting the amount of the dopamine lost at the non-symptomatic stage, even

on the pre-motor level, should be possible by analyzing the deterioration of the motor tract.

Studying this deterioration at the SN tissue level, physiologically a�ected by the PD, we

can bypass the intermediate steps by determining its correlation with the clinical phenotype

and provide an earlier diagnosis at this point on the pre-motor stage.

Figure 3.1: Reverse Pathology to Clinical process

Disclosing the PD a�ected area on the medical image acknowledges it as a biomarker,



3.1. Premises that determine our approach 21

as it is not used for a physical biomarker, as a tool, but as information source itself. The

pathology determining physiological changes represented at the image level must establish

its validity and reliability. The Fractional Anisotropy imaging, one of the DTI imaging

techniques, contains the dopamine �ow directionality, computed for each visual point- at the

pixel level. This imaging technique developed for dopamine study incorporates information

on the dopaminergic data comprise by the protocol method. Finding a correspondence

between information from this imaging type and the clinical diagnoses illustrates a manner

to determine the feasibility of our study, proving not just that the imaging contains the PD

pathophysiology, but also that it is detectable and correlated with the current diagnosis scale.

The hypothesis that represents the essence of our feasibility study is captured in �gure

3.2. The pathological manifestation presented as physiological changes can be recognized

as abnormalities at the image level. We contemplate the employment of speci�c medical

images that withhold the essential information regarding the condition of the neuromotor

�bers, determining the clinical symptoms. Using this logical path, we integrate the clinical

aspect into the physiological change.

Figure 3.2: Hypothesis linking the pathological manifestation with the clinical symptoms

The �gure 3.2 is a schematic representation of our proposition for the medical imaging

speci�c manifestation of PD. The physiological functionalities at the tissue and cell level

have a correspondence at the symptomatic level and the patient is experiencing the result

of the clinical PD manifestation. The deterministic link between the pathology, physiology

and clinical aspects for PD is not abrupt and must be taken into account. When studying

the possibility for introducing biomarkers, the links between the three stages are targeted.

In performing the feasibility testing we are constructing it on the main element account-

able for PD: the dopamine. We envision two levels of information for this key element:

The dopamine content inside the whole brain as the neurotransmitter a�ects more

than the motor tract, its value should a�ect other neural tracts as well.

Speci�c value for dopamine on the neuromotor �bers because its downfall deter-

mines one of the speci�c symptoms leading to PD diagnosis.

The distribution of dopamine on the whole brain can be studied using the anisotropy level.

Signi�cant changes among PD patients and control cases for the FA and/or the ADC

management are translated into practice to provide further study. Focalizing on the source

of dopamine, the SN, as it is the �rst area a�ected by the PD, we should obtain more

accuracy and additional data from the pre-motor stage. Before studying this area we need

to establish that the extracted area is relevant for our study.

The relevancy of the SN area is given by signi�cant di�erences between PD patients and

controls, like in the study conducted on the whole image. The di�erences among patients

having di�erent stages of the disease are relevant as well, making the disease grading. A

further study determining the existence of a correlation between the relevant established

areas with PD, is to conclude the feasibility test. As the purpose is to determine if the

image can be used as a biomarker, the correlation study is mandatory to be immune to the

demographic parameters and consistent among tests, providing reliability and repeatability.
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The ground truth for the correlation test is the H&Y value for each patient obtained by

cognitive testing.

As for the medical images chosen for the feasibility testing, they are DTI sequences:

the EPI withholding the tensor information, essential for the neuromotor tract and the FA

providing the anisotropy with the di�usion directionality. The two techniques, even though

both DTIs, are complementary as information. The database with its particularities and

image protocol determine the approach and the intended purpose for each imaging type in

our study.

3.1.1 Database and image protocol

For all the medical images, the protocol and acquisition parameters determine the image

quality and are relevant for the study from both technical and economical points of view.

Medical Images are digital representation of aspects on human anatomy - body parts, tissues,

organs - by using advanced techniques and processes that allow visualization inside the body

for clinical purpose [Dictionary 2010].

For the medical standard in DICOM format, there can be several imaging types in-

cluded in the �les (*.img �le). These imaging types represent the actual visual information

displayed (e.g. MRI, ultrasound, X-ray image, tomography). When we refer to a certain

imaging type, we actually mean the protocol used (e.g. DTI, fMRI) to capture the image

appertaining to a speci�c imaging modality (e.g. MRI).

Figure 3.3: Example of consecutive axial views - slices of a stack

A number of 68 patients diagnosed clinically with PD and 75 control cases underwent

DTI imaging (TR/TE 4300/90; 12 directions; 4 averages; 4/0 mm sections; 1.2 x 1.2 mm in-

plane resolution) after giving informed consent. The heterogeneity of the patients - Asians,

Eurasians and Europeans - can also be used to characterize a general trend for PD prognosis.

This aspect targets the demographic parameters that have to be indi�erent for a biomarker.

It should be applicable on any type of image, regardless of the patient. For the EPI images,

the DTI images acquired for each gradient direction, we have 351 images (e.g. Fig. 2.4)

that represent slices of 4mm of brain axial section taken in 13 directions, represented as 12

tensor values from 3.1 and the B0 image, for each step (one step represents a position on

the vertical brain axes). In this case, we have 27 images that constitute a single 3D brain
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x y z

1.000000 0.414250 -0.414250

1.000000 -0.414250 -0.414250

1.000000 -0.414250 0.414250

1.000000 0.414250 0.414250

0.414250 0.414250 1.000000

0.414250 1.000000 0.414250

0.414250 1.000000 -0.414250

0.414250 0.414250 -1.000000

0.414250 -0.414250 -1.000000

0.414250 -1.000000 -0.414250

0.414250 -1.000000 0.414250

0.414250 -0.414250 1.000000

Table 3.1: Gradient Values used in our protocol for di�usion images

volume - containing all the possible sections in order to show a complete image of the brain

volume.

In our study, we are working with medical image sequences or slices - consecutive sec-

tional views (see Fig. 3.3) - stored in a medical standard format, together with the acqui-

sition protocol, the information regarding the patient and the clinical establishment where

the acquisition/diagnosis was performed. If for 2D management we are working with pix-

els, when representing digital images as numeric format, at the volume level we are using

voxels. A voxel does not possess its position encoded, it is relative to the other voxels,

but it contains the information referring to the empty and occupied space in a volume. It

possesses sizes that make possible volume estimation. The voxel can be de�ned as a three

dimensional pixel, a volumetric pixel. For a correct 3D representation of the sequence of

2D acquired images, an alignment between the consecutive image slices is needed, in order

to obtain smooth and continuous anatomical details.

For each patient, we dispose of 351 EPI images representing 12 di�usion directions and

one without di�usion each of them composed of 27 slices. This is the reason why the tensor

computation, which takes the 12 directions into account, has a good accuracy.

Due to the complex structure of the medical image encoding encapsulated by the DICOM

format we need to take the useful information from the header �le. During the processing

and analysis level we only make use of the image itself, without the additional information.

This is the reason why we transform the image from the DICOM format to Analyze and

store it as stacks of images that represent an entire brain volume for each patient and each

modality.

3.2 Proposed scienti�c approach

According to recent research, the areas providing PD pathological and relevant physiological

changes revolve around the motor tract and the fact that due to dopamine lost, it is not

functioning properly. As presented in �gure 3.5, we adopt a bottom-up approach starting

from the clinical level and analyzing the pathophysiological changes at the image level

to determine if the information from the image can constitute a marker for PD. In this

manner, taking into account the three perspectives- clinical, physiology and pathology -

we can provide a more accurate view of the disease. The graphic representation starts

at the clinical level with the movement disorder, determined by the neuromotor failures,
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Figure 3.4: 3D Image Stack generated with imageJ

Figure 3.5: Feasibility approach- factors determining our study

which are not just symptoms, but clinical diagnosed PD markers. At the motor level, the

physiology determines the fault on transmission at the neural �ber level. The source of

these inadvertence is determined by the pathology factors of the disease that reside at the

dopamine source, Substantia Nigra (SN) and the area where the neural impulses do not

reach anymore, the Putamen.

The main challenges on the scienti�c demarche is represented by the feasibility studies

involving the research for determining that the image is able to provide the needed patho-

physiological elements. The way to exploit the extracted information is linked to the fact

that the gap between the image level and the PD knowledge must be broken by bringing

meaning into the extracted features and introducing value to the visual data.

Taking these aspects into account, there are several elements to be achieved when using

the images:

• Finding the clinical aspect needed to be exploited
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• Taking the image that best re�ects the clinical aspect

• Finding the image feature that contains the physiology that is a�ected by the clinical

feature

• Extracting and Exploiting the image feature

• Finding the interpretation that emulates the pathology changes

As the clinical symptom determining current diagnosis is the trembling, this aspect is also

able to make distinction among other neurodegenerative diseases and PD. The motor tract

a�ected by dopamine, determining the clinical symptoms, is best found in Di�usion MRI,

as it provides the anisotropy value for the motor �bers functionality.

The reverse engineering at the analysis stage of the features require bridging a new gap

at the knowledge level and determining the way the physiological process of PD a�ects the

extracted features so that we can bring the Proof of Concept (POC) to the Proof of Value

(POV) level.

3.3 Preparing the Feasibility testing

Taking a small cohort from our database for preliminary tests (21 patients and 25 control

cases) we perform several tests. In this case the amount of images is enough for performing

a well-documented study. Depending on the DTI type of image, their resolution and their

quality changes. The DTI images with high accuracy on the anatomical detail, even if the

resolution is not the highest, provide good primary data for segmentation.

Using at �rst a global approach, we determine if the anisotropy level on the whole brain

is correlated or visibly a�ected by the PD pathology at a measurable level. The fact that

the FA imaging conceals the anisotropy information is perceptible as the image is produced

by computing the anisotropy values based on the equations 2.2 and 2.1. The question at

this point is if the anisotropy information is valuable and can be further used.

Further on we concentrate our study on a more localized area as we study the midbrain.

The study of this area containing the source of dopaminergic cells, the SN, represents a

higher level of re�nement for the tissue physiology. Manually segmenting this area provides

the values una�ected by the segmentation process, determining the brute correlation with

the disease. The anisotropy values and the directionality are both represented on the FA

image. The FA color code stands for the direction of di�usion.

• Red - left right (LR)- Red channel values for the �bers oriented from left to right in

the FA color image;

• Green - anterior posterior (AP)- Green channel coding for the �bers oriented from

anterior position to posterior in the FA color image;

• Blue - up down (UD)- Blue channel coding modality for �bers going from upwards to

downwards inside the head volume in the FA color image;

The fact that the neuromotor tract has, according to the medical knowledge, an Antero-

Posterior di�usion orientation, corresponds to the green channel color code on the FA image.

This aspect provides an idiosyncrasy for isolating the targeted tract.

For both general and detailed studies we are using volumetric data. On the whole brain

approach we align the slices and compute then the anisotropy. For the midbrain study,

we perform additional segmentation on the aligned slices before computing the anisotropy.

The slice management and volumetric image handling represent the initial steps of both

approaches.
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3.3.1 Managing the image stacks and slices

There are several stages in managing the volumetric data at the image level. The provided

images in DICOM format are pre-processed using spatial normalization [Ashburner 2000]

and robust smoothness [Kiebel 1999] implemented in statistical parameter mapping (SPM).

Afterwards the resulted data is segmented according to the brain tissue type using the fMRI

module that implements the Tairarchi atlas. The white matter (WM) image is further used

for the computation of FA and ADC values for each voxel, providing new images.

For statistical studies and inter-patient correlation, we store several information pro-

vided by the DICOM image and header �le into a MySQL database along with a list of

features. From the header �le we are interested in extracting the the patient information,

angulations and the type of the image that we are handling.

Parsing the images from a folder we are detecting the patient identi�cation number (patient

id) and the image type. Once we have the DTI image that we need, we identify the slice

number and the direction of di�usion, if required (only for the EPI images), and we can

proceed at constructing the volume for the patient that we are dealing with.

All these preliminary steps are performed using imageJ 1 toolbox in Java. We further trans-

form the images from the DICOM standard encryption into Analyze format, because the

image is separated by the additional information and for supplementary changes we can

manipulate just the image, without the rest of the data. In these conditions, normalization

on the images using Statistical Parameter Mapping (SPM) is faster.

Each patient has stored in a separate folder several DTI imaging types. Speci�c data for

each image is stored as well (e.g. image size, type etc). When working with EPI images

representing the same axial slice taken using di�erent di�usion direction, determined by

the tensor values, we place them on the same stack. For constructing an image volume

on a speci�c direction, we take from each stack the slice belonging to the designated di-

rection. Di�erent directions have di�erent gray levels and are more or less a�ected by the

surrounding noise.

Figure 3.6: Slice view in 3D - voxel level

1imageJ -http://rsbweb.nih.gov/ij/
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This aspect is present in all the head images and it is due to the fact that the patient

can slightly move while breathing and/or trembling. The resulted image is most of the time

blurry. To overcome this e�ect, we apply the spatial normalization and inter-slice alignment

for constructing the 3D image.

Each image is additionally preprocessed using the Anisotropic di�usion �lter for a better

delineation of the anatomical elements. Using the pixel intensity uses a contour plotter

function implemented in imageJ to extract the brain from the background image.

The di�usion FA (equation 2.2) and ADC (equation 2.1) values are computed for each

image and the mean value for the stack. The value that characterizes the image is the mean

value from all the values of the stack. The functions that compute the FA and the ADC

values are created in Matlab by Craig Jones [Jones 2008] and use the FA/ADC equations

from 2.2 and 2.1. These new sequences developed using either directly the pixel/voxel

information, or those produced by the scanner, represent the value of the anisotropy and

the di�usivity for a certain patient. The information provided at the image level is low-level

and we are extracting it for further usage together with medical knowledge for diagnosis

and prognosis.

3.4 Preparing the image for processing

Digital image processing is concerned with working with programs that manage the digital

images in order to modify their characteristics. The methods implemented by such a pro-

gram take as input images and provide the same number of images as output.

The digital image processing domain refers to transforming an image f in another image

g by applying a function to it. The �rst and most used technique is to apply a speci�c

operator ϑ so that:

g = ϑ(f) [Sonka 2009] (3.1)

In this case, the operator is meant to perform a speci�c task but to preserve the image

information. These operators are part of mathematical morphology and are usually used for

the preprocessing step of the image systems to remove noise, artifact, to enhance certain

aspects as the contours. The image operator ϑ must satisfy two properties: distributivity

and translation invariance. These properties guarantee the preservation of the initial image

attributes. The distributivity assures that the e�ect of the operator on the combined image

can be deduced from the individual image and the translation invariant o�ers the same

result on a translated image as it does on the original one [Sonka 2009].

Mathematical morphology is used for image processing and analysis as it o�ers the

possibility to represent any translation invariant operator between complete lattices using

elementary morphological operators. We are using the morphological operators at the pre-

processing level of our approach.

In our system we need several elements of image pre-processing for a good image quality,

before processing. This is prevailed with morphological operators, together with segmen-

tation algorithms and de-noises �lters. Our main concerns are linked to the movement

artifacts from our images that must be eliminated for a proper analysis. When placing the

images on a stack, the alignment between the slices is highly needed. This process accom-

modates the 3D volume with a regulate volume and an adjusted contour for the anatomical

volumes.

The medical images represent transversal slices of the head. Depending on the imaging

angulation, there are several sectional views that provide human body images: axial view

(Fig. 3.7(b)), sagital view (�g. 3.7(a)) and coronal view (Fig. 3.7(c)). The 2D images (ex.
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Fig. 3.6) that represent consecutive sectional views compose a 3D image, a volume (ex. Fig.

3.4).

(a) Sagital slice (b) Axial slice (c) Coronal slice

Figure 3.7: Head MRI slice views

For the axial plane, the images that we have in our database are taken in AC/PC plane

- Anterior Commissure/Posterior Commissure. This axis is signi�cant from the anatomical

point of view and it is used by the radiologist because it is distinguishable in all the MRI

images. The sagittal plane and the coronal one are not used by our approach.

3.5 Feasibility study

In this research part of our study we are using existing dedicated systems for medical

imaging handling. This provides stability to our methodology as we are not concerned at

this point with the technical aspects of the processing. We use the Matlab provided suite

for the global test and imageJ for the midbrain analysis.

Statistical Parameter Mapping (SPM) is an academic software toolkit used for ana-

lyzing functional imaging data by image processing and analysis [Guillaume 2008]. In our

approach, we use several functions provided by SPM. We necessitate segmentation features

in order to perform bias correction and spatial normalization at the same time as tissue

segmentation. In combination with VBM5, which performs region-wise volumetric compar-

isons among several subjects, SPM5 requires images that have been spatially normalized.

For revealing the physiological elements we require the images to be segmented into di�er-

ent tissue classes. The smoothing process o�ers us a clearer image which is necessary prior

to performing statistical tests [Friston 2000].

Voxel Based Morphometry (VBM) is used in our proceeding at the data processing

level. We use VBM5 in our proposition as it complements itself very well with SPM5 toolbox

expanding its capabilities. It uses previous segmentation for further analysis [Gaser 2008]

performing a voxel comparison for determining the tissue concentration. Its disadvantage

is the susceptibly to registration and segmentation errors.

The image must be preprocessed before VBM5 is applied, as it does not work for all

medical imaging protocols. This pre-processing is done in our case using SPM5. The

functions from the brain extraction module are applied for our images and for normalizing

the GM and WM images. With VBM, registering the brain to a template and smoothing

the result by applying an average value for each voxel, between itself and its neighbors,

overcomes the di�erences between brain anatomies.
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3.5.1 Global image information analysis on the whole brain

The medical imaging processing tools using SPM and VBM run under Matlab 7.0. These

toolboxes provide us with the segmented images and the pre and post processing steps

corresponding to our study. The script that computes the FA and ADC takes the segmented

tissue images, using the B0 value and a threshold of 50 for the di�usion values (the default

value), delivers the di�usion tensors values.

The processing level requires several additional parameters that need pre-setting for the

SPM function to generate the tissue maps [Yushkenvich 2008] [Fillard 2002]. The Eastern

Asian brain maps for the segmentation phase is one of the parameters. We choose this

particular map because it is the closest one to the population content in our database, but

it is nevertheless restrictive. Regarding the bias regularization, another SPM segmentation

parameter, we use the heavy threshold for this purpose, as it eliminates the surrounding

noise.

The segmentation process generates grey matter (GM), white matter (WM) and cerebral

spinal �uid (CSF)-see Fig. 3.8. The tissue segmentation is evaluated by assessing the

result of the segmentation, the segments - the GM, WM and CSF. The volume obtained

by putting all the resulted segments together is the stripped brain, without the skull area.

We eliminate the skull as it in�uences the FA and ADC values afterwards.

An optimization for the brain images is represented by the normalization of the image to

a standard space. This is completed by matching the grey matter to a reference one and

eliminating, in this manner, the skull [Friston 2000].

(a) GM (b) WM (c) WM smoothed (d) CSF

Figure 3.8: Images Processed:GM, WM, Smoothed WM and CSF

In �gure 3.9, we illustrate the requirements from the VBM functions before beginning

the processing procedure [Yaasa 2004]. Using SPM functions attains these requirements.

Performing normalization for an image in the warping process, disturbances introduce some

di�erences. Modulation is used for compensating these di�erences. By performing modu-

lation the amount of grey matter is preserved in the normalized image. (E.g when a lobe

has half the volume of the image in the template, then during normalization the volume

could be doubled, but the voxels will be a�ected in this case because their number will be

doubled). Using the modulation process the coordinates in the normalized image will be

restored to their original values by using the deformation �eld values [Friston 2000].

For the normalization process, we can use one or more template images. The algorithm

minimizes the sum of squares di�erence between the image and the templates. The �rst

step creates a match between the images of the head with the skull. The next step per-

forms a matching between the brains and registers the result. The registration step uses a

Bayesian framework that searches for the solution that maximizes the a-posteriori proba-

bility [Friston 2000]. At this point, in the SPM segmentation algorithm, the deformations

are estimated for the modulation part.

The registering process for the tissue probability maps and the processed image uses a
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Figure 3.9: VBM Pre-processing requirements [Yaasa 2004]

minimization of the sum of the two terms -the two images. This process is performed by

the warping function. For this function, the portability of the data and the parameters are

used. We obtain a smoother deformation. Having a smaller value for the cuto� allows more

detailed deformations to be modeled, but the processing time is longer [Friston 2000].

We use a smoothing function from the SPM in order to eliminate the noise or deforma-

tions acquired during processing. The function performs the smoothing using the Gaussian

kernel. Pathology detection with deformation-based morphometry is integrated within the

pattern theoretic approaches - deformation maps of the variations in normal anatomies

based on continuum mechanics [Thomopoulos 1994].

The segmented images obtained, the brain maps, are used afterwards to characterize

each patient from the three perspectives. We are computing the anisotropy values for these

types of images. After eddy-currents correction a valid segmentation is possible on T1 and

T2 images, but we are more interested on the EPI images, as the tensor information is

comprise within.

We tested a di�erent DTI image to determine those that o�er not just clarity, but mean-

ingfulness for the disease. The information stored by each imaging type has a di�erent

meaning. For the FLAIR DTI images we only perform the tissue segmentation and spatial

normalization with the Statistical Parameter Mapping (SPM5) and the Voxel Based Mor-

phometry tool (VBM5) on a stack of images constituted by all the 19 slices acquired (see

Fig. 2.5(a)). The resulted images constitute a volume image. Afterwards, the di�usivity

functions applied on each processed image determine a mean value for all the images that

represent the same tissue, characterizing the whole brain. This imaging type is not complete

enough for our study, as it does not provide the anisotropy or other �ber related data.

For the EPI images we obtain a value for each tissue type on the 27 images stack.

Characterizing the entire volume (see �gure 3.4) of the brain, we compute the average

values of these functions on all the images. The gray matter (GM) and white matter

(WM) segmented images are used afterwards to determine a value to characterize the entire

volume. The analysis using VBM5 is done next when the FA and ADC values are computed
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(a) FA image (b) ADC image generated

Figure 3.10: FA 3.10(a) and ADC 3.10(b) example of generated images

as well. An angular correlation is used to overcome di�erent intensities inside the slices due

to the di�usion and to achieve similar image brightness for all slices. Even with additional

optimization on the obtained images, the �nal result does not provide the same quality as

the one generated directly by the scanner.

Even with the additional algorithms including spatial normalization and Bayesian coe�-

cients for maintaining the deformation ration at the anatomical level, the processed images

have a low resolution. After the atlas-based segmentation into gray matter (GM), white

matter(WM) and cerebro-spinal �uid (CSF), we store these images. The stacks generated

at this level are then transformed into Analyze format for further analysis.

3.5.1.1 FA and ADC computation

After tissue segmentation performed on the brain image the current working images are the

white matter (WM), the gray matter (GM) and the cerebral spinal �uid (CSF) for all the

types of images used. The images containing WM and the smooth modulated images with

WM are then used for FA and ADC computation (Fig. 3.10).

FA is a useful measure in the DTI images as it reveals the connectivity at the brain

level. Again, for all types of images the values are taken and for each patient an average

is computed for expressing the values at the volume level. The values used for providing

the images in �gure 3.10 are computed using the equations 2.2 and 2.1 on each slice of the

volume. The mean value obtained from all the slices for the FA and ADC represents the

information that we are studying for determining the anisotropy and di�usivity.

The image analysis is using two parameters: FA and ADC. The obtained values must

be close to the value of 1 [Chan 2007]. For our images, we obtain an anisotropy average of

0.56 for each slice image and of 0.52 for the whole brain on the GM images. For the CSF

images we have a lower value, as expected, and for WM slightly lower values than for the

GM.

Augmenting these values demands changes in the processing and the pre-processing as

well. These results depend on the data processing but also on the di�usion values and the

tensor directions. When performed on more di�usion directions, we obtain higher stacks

and better accuracy as well.

For evaluating the analysis we are using the H&Y scale (see annex D) where the Parkin-

son patients are annotated on a scale from 1 to 5, according to the severity of the disease.

We are trying to achieve the same classi�cation using the FA and ADC values like the

one in the H&Y scale, making the di�erence between the a�ected cases and the healthy
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ones by computing the values for the parameters on the patients as well as on the control

images. Di�erent severity degree for the disease, expressed just like in the H&Y scale, can

be determined by the analysis functions.

3.5.2 Localized study on the midbrain anatomical area

Analyzing the green channel from the FA color images to determine if the �bers running in

the AP direction are similar for all the cases or if there are degradations for the PD cases.

Segmentation of the midbrain area does not aim on accuracy, but on limiting the image

informational volume from the whole brain, to a smaller area of interest. Therefore, we

segment the midbrain manually by determining a box-sized volume that includes the needed

anatomical area. This process does not introduce additional noise or artifacts during the

image handling, permitting an independent analysis of the brute value of the anisotropy.

This value serves further to determine if a more precise automatic detection a�ects the

information by inducing artifacts or eliminating part of the relevant data.

The easiest way to analyze the green channel is to generate the histogram for the area. The

histogram represents the number of pixels that have a certain intensity: N(bi)

P (bi) =
N(bi)

N
(3.2)

where N represents the total number of pixels.

Based on the fact that the neuromotor tract, according to the brain pathology, follows

the anterior -posterior direction, we perform a color analysis on the volume of the midbrain

roughly extracted, in order to see whether the �bers starting from this area oriented in AP

direction have a correlation with the H&Y scale.

Figure 3.11: Green channel analysis

Figure 3.11 represents the main aspects in the analysis of the green channel. We make

the rough detection of the midbrain area and compose the volume of interest on the EPI

image. Placing the determined volume on the FA image for the green channel extraction, we

perform an alignment between the two image types. Once we split the obtained FA volume
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Test H&Y Age Male/all

nr [avg] Patients Controls Pat Control

1 2.312 64.5 59.37 11/16 6/16

2 2.375 63.31 60.93 9/16 9/16

3 2.375 64.06 58.5 8/16 7/16

4 2.467 62.75 61.5 9/16 8/16

Table 3.2: Test batches characteristics [Teodorescu 2009b]

on the three-color channels, we consider just the green one for generating the histogram and

extracting the values for the intensity range of interest. This range is chosen in a way that

we can exclude the noise. We estimate it in between 10 and 100 units. The histogram-ranged

values are then correlated using PASW 18.0 (Predictive Analytics SoftWare, formerly SPSS-

Statistical Package for the Social Sciences) tool with the H&Y values.

This analysis o�ers the opportunity to see if the PD and the correlation between the

disease and the level of green a�ect �bers starting from the midbrain area. This level of

green represents the anisotropy level and this particular area is one of the PD a�ected

ones. Correlated with PD, as the motor tract represents most of the �bers going in AP

direction, represents a correlation between the physiology and the clinical level. In this case

the anisotropy level, if correlated with the H&Y scale represents an indicator of the disease

at the midbrain level. Therefore, we are able to determine that the starting point for the

�bers we need to grow is relevant for our study.

3.5.3 Test parameters and characteristics

Testing procedures must assure that they are sensitive to our parameters and robust to other

exterior factors. Thus, we construct several testing batches by varying parameters that we

need our test to be robust to. We apply this procedure for the demographical parameters,

as shown in table 3.2. In order to evaluate the di�erent stages for data processing, we

introduce several testing groups - testing batches - constituted by random cases so that we

can evaluate the robustness.

We prepare four test batches from the 42 patients available - 21 PD cases and 21 controls.

Age variation can a�ect the disease by introducing brain atrophy and making the neural

�bers harder to detect. This is the reason why we introduce this factor as a parameter in

our tests. The patient's gender can a�ect the detection as the female have smaller skulls.

The detection and segmentation of the images is then more di�cult. Together with these

parameters, the H&Y value represented as the severity degree of the disease could a�ect

the anisotropy.

The test groups are chosen so that one of the demographic parameters varies and the

others are correlated among patients and controls. Big di�erences on the results from one

test to another reveal the sensitivity of the test to the demographic parameters. A consistent

test for all the test batches is not sensitive to the variation parameters (see table 3.2). If

the testing procedure has similar results on all the test groups, we can further analyze the

results of that particular test, depending on its interpretation and input data.

3.5.3.1 Green Channel analysis on the midbrain area

For the green channel study, we dispose of a batch of 42 cases (21 patients and 21 control

cases). From this batch, we take out randomly 5 cases from the patients and 5 from the



34 Chapter 3. Applicability of medical image as biomarker

Test

Independent

Sample

T-Test

Correlate

Bivariate
ANOVA

nr Left Right Left Right Left Right

1 24.4 74.0 13 8 0.872 0.937

2 12.2 69.3 7 8 0.906 1

3 75.5 65.3 3 6 0.937 1

4 83.6 71.4 7 7 0.937 0.906

Table 3.3: Study on Green channel on the left and right side [Teodorescu 2009b]

controls in order to eliminate the subjectivity - the in�uence of the demographics - from

our study (table 3.2).

The T-Test is applied on the histogram obtained from the midbrain area by eliminating

the noise. This procedure aims at detecting a correlation between the value of the his-

tograms and the H&Y values. The histograms represent the anisotropy value on the AP

direction in the midbrain area, which should indicate the motor �bers and in PD could be

characteristic for the progression of the disease. Examining this correlation, we vary the

age di�erence between the patients and controls and the number of male subjects in the

testing batch, as well as the mean value on the H&Y scale.

The results on the green channel study performed on the patients with the characteristics

from table 3.2 are presented in Table 3.3. This table contains several T-Test methods and

their results regarding the correlation between the green channel histogram values and the

H&Y values.

The Independent Sample T-Test detects a large variation between the values of P, which

can be explained only by the variation of demographic characteristics of the patients. We

consider this type of study to be a�ected by demographic characteristics, especially on the

left side (e.g 12% - 83 %). Similar range of variation is obtained on the Bivariate test,

visible on the left side as well. The ANOVA test is the most consistent one and has good

results, being reliable and adequate for our purpose. This initial approach representing the

feasibility study with the associated results, have been presented on the RSNA conference

[Teodorescu 2009b] from the clinical point of view. This study con�rmed that there is a

correlation among the anisotropy on the AP direction and the H&Y severity scale. We

interpret this correlation as a link between the �bers staring from the midbrain and the

H&Y scale. The �bers at the midbrain level that are a�ected according to the PD severity,

represented by the H&Y scale, are with no doubt the motor ones. Therefore the motor �bers

starting from the midbrain are indicators of the PD severity and have AP directionality.

The ANOVA test provided a good correlation, but not applicable for quantization of the

disease.

3.5.4 Feasibility conclusions

The global testing evaluates the FA and ADC values on the entire brain volume. The mean

value on each patient does not o�er an average able to distinguish between the PD and the

control patients, therefore we need to further focalize our study.

The FA and ADC images obtained computing the corresponding values reveal a good

image of the dopamine paths. The Putamen is better de�ned on the FA image and a more

insightful study on this area is possible. We will use the image without skull, as it interferes

with the management of the information, as shown in the global image testing. Managing
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the whole brain, there are several aspects that arise from our study for further processing:

• Removing the skull as the bone tissue interferes as intensity with the tissue voxels,

introducing additional noise

• Removing the noise in the image surrounding the skull - the artifact

• Focusing the research to a volume of interest: at the hemisphere level or midbrain

level

PD a�ects both brain hemispheres, but is more obvious in the left side of the brain, therefore

an analysis on this side should be more relevant. For the whole brain analysis, the anisotropy

information exists at the image level, but as the volume includes several neural tracts, a

more focused study should perform better.

At the patient level, preparing for the feature extraction algorithms we needed landmarks

applicable to all patients for guiding our algorithms without any interference from the

patient variability. These elements, together with the hemisphere detection algorithms, set

up the elements for the automatic detection of the location where we need to apply the

feature extraction algorithms.

From the study of the green channel the AP positioning of the �bers reveal a pattern

that follows the disease severity that indicates that the dopamine �ows in this direction,

validating the medical premises and the fact that it can be followed on the image. Studying

the �ow at the midbrain level by using the FA values from the image highlights the �bers

that we need for study. The aspects revealed by the localized study on the source of

dopamine provide another perspective, backing up part of our premises:

• The dopamine a�ected by the PD pathology is represented by the FA

• The FA image is capable to provide accurate information on the PD pathological state

• The information at the FA level is correlated with the PD severity evaluated with

cognitive testing

Analyzing the two feasibility studies providing a general view and a PD targeted one,

if using the whole brain proved to be ine�cient for emphasizing the abnormalities, when

zooming in the a�ected area, we obtain a correlation with the PD. The predisposition of the

study inclines to the local approach, where the non-speci�c PD areas are eliminated and in

the remaining information, the PD a�ected pathology represents a higher percentage. In

these conditions a more accurate segmentation of the midbrain should determine a higher

or stronger correlation with the disease.

The �nal conclusion for the feasibility study is that DTI medical image not only incor-

porates the information needed for PD pathology, but that this information is exploitable.

These aspects determine the liability to use DTI imaging as biomarker as it is able to pro-

vide information that re�ects the PD pathology. This type of biomarker o�ers proprieties

from the clinical end-point marking as it is further tested on diagnosis process. The results

provided by these studies and the methods for testing provide a comparison value for further

tests determining additional inferences.

3.6 From feasibility to information processing

Considering all the elements highlighted by the feasibility testing, the conclusions and the

di�culties encountered at the medical image management, the transition from theory to
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the technical aspect we make next the transition to processing. This implies several per-

spectives: manipulating the speci�c medical image standard with the exclusive information

provided by it, removing the unwanted data and extracting the parameters for processing

and estimation, as well as eliminating the speci�c variations introduced by an automated

system handling di�erent patients. If for the �rst perspective we are able to estimate and

elaborate a method for managing the standard and extract the medical information, for the

second perspectives, we are able to de�ne algorithms and methods only after analyzing the

requirements.

Using a specialized library providing the elementary digital image processing and anal-

ysis functions is justi�ed as it o�ers medical image reading and writing, basic �lters and

plug-ins. It enables us to use algorithms already implemented and to begin our processing

at a higher level of data management. The ImageJ 2 represents our choice as it is a useful

open source Java based library conceived for medical image processing and analysis that

o�ers the possibility to develop a reusable module application integrable in the library as

a plug-in. It also has the advantage that developers using this library are continuously

updating it by o�ering their contribution as plug-ins. The entire functionality is encapsu-

lated in ij.jar for easy integration and usage. In this manner the newest algorithms can be

tested with the available images and further development can be made without rewriting

the basic existing functionalities. Besides, it o�ers the possibility to test several methods

before deciding on a certain algorithm or approach by directly analyzing the results.

For each image type, we are targeting the PD related features, speci�c elements that are

better portrayed in that particular DTI imaging type. Managing di�erent imaging types

determines di�erent techniques for pre-processing and analysis.

For the DICOM management, we use a Java program with imageJ features, able to

extract and store the information from the headers to MySQL tables. Beside the patient

identi�cation number, the header �le provides information of the slice number and the

image type stored and the di�usion direction for the EPIs. The slice number is used for

volume construction, together with the di�usion direction.

Once this �rst aspect of the automatization for the images is solved, we determine the

unwanted data inside each DTI image type, based on the experience from the feasibility

testing. An analysis of the DTI images that we will further use de�nes several aspects taken

into consideration:

• Eliminating the skull from all the images

• Eliminating the surrounding noise

• Treating in an automatized manner all the patients

Eliminating the skull is a requirement detected on the global testing because it a�ects the

FA and ADC values, as the intensities of the pixels for the bone tissue are similar to those

representing the WM. The surrounding noise represents pixels that have the same e�ect as

the skull. In regard to the patients, their heterogeneity is bene�c for validating our study,

but an automatic approach needs to consider all the variations that generate dissimilarities

that can a�ect the research and management of the images. In this area there are several

aspects as well:

• The demographic aspect

• The position in the image for each patient

2ImageJ website -http://rsb.info.nih.gov/ij/ - last accessed on June 2010

http://rsb.info.nih.gov/ij/
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• The orientation of the brain for each patient

In view of the demographic aspect we have constructed the feasibility testing method, but

this aspect on an automatic approach poses the same problems: di�erent brain sizes depen-

dent on the patient's sex and/or age, di�erent brain atrophy determined by the geriatric

factors in elderly patients and di�erent brain shape susceptible to the patient's race. These

elements together with the positioning and orientation inside the image constitute new tasks

for the pre-processing level of our study.

3.6.1 Skull removal

Examining the performance of the methods used in the feasibility study we determine the

elements needed for managing our imaging for an optimal result. The methods used for

global feasibility testing have been applied to the EPIs, as they are the ones providing the

elements for the �ber growth. The FA images require this procedure as well, not only for

skull removal, but for eliminating the noise as well. The atlas-based skull removal method

o�ered by SPM and the entropy based one (MedINRIA) performed better on the feasibility

stage, than the atlas method provided by Slicer, which was slow on our images.

Before applying the skull removal method on the images we use a contrast enhancement

of 0.5% for a better volume delineation. The angle for the enhancement is limited in our

case at 60 degrees minimum, to avoid highlighting the noise.

Using the atlas based approach (SPM) , the segmentation detects the skull using

its position as the tissue surrounding the brain. With this approach due to the EPI image

quality, some of the other types of tissue patches were removed or not correctly identi�ed.

This tissue is mainly the CSF, because it is placed next to the skull, but the result was also

in�uenced by the patient variability.

The algorithm based on the voxel entropy (MedINRIA) [Fillard 2007] is a�ected

by the exterior elements such as noise. This sensitivity did not provide a dependable result

on our images.

Our own method is based on the positioning of the skull with regard to the rest of the

tissue in the image. It uses KMeans classi�cation for the tissue to detect the bone entropy

corresponding to its tissue. It detects the position of the voxel cluster large enough to

represent the skull and positioned on the exterior of the other large clusters. The KMeans

method introduced in our approach is implemented in Java and was available as a plug-in

in imageJ3. The FA image provides the size for the skull cluster. We used a four-class

disposition to distinguish between the bone tissue, the GM, the WM and the CSF. The

algorithm was not sensitive to the exterior noise, as we have applied previously a noise

removal �lter provided by the same library. All the values for the pixels outside the skull

perimeter were considered as noise and faded into background.

After applying the removal algorithm the brain tissue constitutes the only information

in the image. Estimation, analysis and processing on these images consider just the brain

tissue state.

3KMeans in imageJ: http://ij-plugins.sourceforge.net/plugins/clustering/index.html - last ac-
cessed on June 2010

http://ij-plugins.sourceforge.net/plugins/clustering/index.html
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(a) Patient 1 position (b) Patient 2 position (c) Patient 3 position (d) Position of patients
on the image

Figure 3.12: Variation in patient position inside the image

3.6.2 Inter-Patient variability

The automatization of the marker and accurate testing are dependable of the unitary man-

agement of the patients. The inter-patient variability treats the di�erences between patients

and presents solutions for dealing in the same manner with all the images, independent of

the patient that it belongs to. For proposing a solution for the variability, the variable in-

volved has to be identi�ed �rst. In this case, the variations are the result of the demographic

di�erences and of the patient's positioning on the image.

The demographic di�erences are the main source for the inter-patient variability. These

demographic di�erences consist in di�erences among patients due to sex, age or race. The

di�erence resulting in the female skull being smaller than the male is due to the sex di�er-

ence. The race di�erence is manifested as di�erent shapes of the skull among Europeans,

Asians and Africans. Another demographic factor is the age factor determining elderly

patients that su�er from brain atrophy to poses di�erent brain shapes and shifting of the

anatomical structures. In these cases there are also anatomical regions that can be a�ected

by other diseases or geriatric conditions. All the demographic factors determine di�erent

width and height of the brain volume resulted from di�erences for the brain shapes among

patients.

The positioning of the patients inside the image determines di�erent positioning for the

algorithms handling the brain information. Figure 3.12 represents di�erent patients and

their positioning on the image coordinates (sub-�g.3.12(d)).

Another aspect regarding the inter-patient variability is represented by the di�erences

among the volumes of interest, determined by di�erent volumes of certain anatomical struc-

tures. The midbrain area is one of our volumes of interest and this structure is not immune

to the inter-patient variability factor linked to its shape and volume. Figure 3.13 illustrates

the di�erences among patients regarding the midbrain area shape and size, as well as its

positioning relative to the whole brain volume.

The same di�erences are present for the Putamen as well, another volume of interest

for PD pathology.

3.6.3 Intra-Patient variability

The di�erentiate development of the two hemispheres determines discrepancies on their

volume and shape. This diverse development of the hemispheres is translated also onto the

corresponding anatomical structures. These structures complementary to each hemisphere

present di�erent development in volume and shape. The variability from this standpoint is

illustrated in �gure 3.14.
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(a) Highlighted midbrain for pa-
tient 1

(b) Highlighted midbrain for pa-
tient 2

(c) Highlighted midbrain for pa-
tient 3

Figure 3.13: Di�erences in shape for the volumes of interest among di�erent patients -

highlighted midbrain area on EPI B0 axial slices.

(a) Patient orientation on the im-
age

(b) Di�erences in midbrain shape
and size form one hemisphere to
the other

(c) Di�erences in putamen size
and shape between the two hemi-
spheres

Figure 3.14: Orientation of the patient in the image in 3.14(a) and di�erences in shape for

the volumes of interest for the same patient in 3.14(b) and 3.14(c)

PD pathology reveals distinctions on the manifestation of the disease for the two sides.

Our study considers this aspect separating the two hemispheres and performing indepen-

dently for each of them.

3.6.4 Using geometrical elements for solving the patient variability

For the patient variability we de�ne a system of references based on the image landmarks,

consistent for all patients. We consider introducing several geometry-related parameters

able to determine the relative position of the brain and its anatomical structures in the

image.

Having only the brain structure represented the whole image enables us to set landmarks

based on the whole volume estimation, so that we can eliminate at least a part of the patient

variability. We are retrieving the center of mass for the brain using an imageJ plug-in

algorithm -object counter4. This evaluation of the position of an object on an image can

be performed at 2D or 3D level corresponding to one slice or several. This landmark is

4imageJ plug-in Object Counter : http://rsbweb.nih.gov/ij/plugins/track/objects.html - last ac-
cessed on June 2010

http://rsbweb.nih.gov/ij/plugins/track/objects.html
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able to facilitate an alignment among the patients and to de�ne a central axis through each

brain volume. The center of mass represents the solution for the relative positioning of the

segmentation methods inside the brain volume. It is useful when determining the slice that

comprises the anatomical region of interest placed higher or lower on the central axis of the

brain volume.

Figure 3.15: Brain edges detected for variabil-

ity function evaluation

For determining the positioning inside

the brain structure for each patient we need

additional information regarding the orien-

tation. This aspect is determined using

the inter-hemispherial axis representing the

axis delineating the two hemispheres of the

brain for each slice.

3.6.5 Hemisphere detection

For an uniform handling of the patients,

beside the center of mass at the volume

level we need a de�nition for a plan view,

a plan that integrates the center of the

brain, making the distinction between the

two hemispheres. Detecting this plan re-

quires the outer boundary of the brain (Fig.

3.15). We analyze this contour as a varia-

tion function determining the maximum in-

�exion point on the function corresponding

to the occipital sinuses at the base of the Occipital Bone of the skull.

This distinctive mark, together with the center of mass of the brain, determines a sagittal

plan between the two hemispheres. In 2D, on an axial slice, the mark of the occipital bone

and the center of mass determine a horizontal axis indicating the orientation of the brain

in the image. This axis serves as inter-hemispherial limitation.

3.7 Conclusion and challenges

As the feasibility study revealed, the midbrain area anisotropy indicates a correlation with

the PD severity. The pathology for the midbrain area determines signi�cant physiological

changes, detectable at the image level. This anatomical region is therefore one of the image

volume of interest used for the neuromotor tract study. The study of this tract is possible

only if �ber detection is possible.

The di�usion directionality, chosen and validated by the feasibility testing on the green

channel, revealed signi�cant information stored by the neural �bers situates on AP direction.

The fact that the anisotropy level represents this information highlights the in�uence of PD

on the neuromotor �bers. For an accurate extraction of the �ber tract needed for further

study a second volume of interest is required. This necessity resides at the midbrain area,

as several other neural tracts traverse it. The FA image that contains the anisotropy and

the directionality cannot be used as guide in tractography because the tensor information

resides inside the EPI. In this case we need as second volume of interest a structure traversed

by the neuromotor tract and positioned on the AP direction from the midbrain standpoint.

The PD pathology studies reveal that the Putamen area is one of the structures that meets

our requirements and manifested sensitivity to PD. This area represents in our study the
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second volume of interest.

Automatic patient management does not include variances due to the demographic

elements and inter/intra-patient di�erences. The geometrical landmarks and the inter-

hemispherial axis are our proposed solutions for these variances. An adaptive approach on

the detection for the volumes of interest completes the intra-patient variability elimination.

The detection of the volumes of interest should be performed on the image where the

neuromotor �bers are grown. The EPI nomenclature includes the tensor information used

in tractography. This process determines the neural �bers by using the di�usivity directions.

Our targets are the �bers from the neuromotor tract, starting from the midbrain area and

passing through the Putamen. The midbrain can be detected on the EPI image, but not

the Putamen. For the second volume of interest the FA image o�ers better information. In

this situation the tractography requires a pre-registration process for the Putamen on the

EPI volume.
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H
aving already the context provided by the feasibility test and based on the existing

scienti�c research, medical imaging, speci�cally DTI, is able to provide consistent

information related to PD. The medical imaging information is also in concordance with

the PD progression. Based on the theoretical premises studied in the previous chapter as

feasibility tasks and considering the conclusions, a reliable study linked to clinical testing

requires an automatic system. The aim at this point in our research is to create a system

totally automatic that can evaluate the PD severity based on the DTI imaging information

and we present in this chapter the methods for processing and analysis.

In these conditions, the premises for our approach reside in the previous chapters. As

presented by the feasibility study, the SN found in the segmented midbrain area has an

anisotropy value that is correlated with the H&Y values. A more accurate detection of the

midbrain area, achieved by automatic segmentation, should provide better correlation. The

correspondence illustrated by the anisotropy level, determined by the dopamine circulation

on the neuromotor tract, is the targeted feature in our research for the image processing level.

The module represents the entire information transition process from �gure 4.1. There are

several levels of management for the information enabling the medical image to be used as

biomarker.

The �rst two steps in our approach have been resolved by the methods presented in the

previous chapter, as they arise from the feasibility study determining the speci�c algorithms
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Figure 4.1: Main steps from raw data to prognosis

for implementation. The third and forth step de�ne the medical image information manage-

ment as they represents the image processing methods and feature extraction. The methods

developed for information management in�uence the �nal result of our study. These fea-

tures should o�er a correlation with the disease at least as good as the one determined at

the midbrain level.

The processes performed by the algorithms from the pre-processing level to the analysis

level can be situated both on medical image processing and image analysis domains. During

digital image processing, we alter the images during the method development, as required

by our algorithms, but speci�c processing elements are used by the algorithms in the pre-

processing level. Managing medical image information for feature extraction can be included

in the Image Analysis process. The algorithms performing image analysis are concerned

with extracting information linked to the context of the image [Burger 2008]. The methods

using these algorithms take as input images, but they generate as output either an image

or numerical data. The methods from �gure 4.1 can be included among image processing

and/or image analysis algorithms.

The discriminative biomarker of our study is represented by the EPI and the FA imaging,

as resulted from the feasibility analysis. We start by using EPI images, where using an

automatic segmentation algorithm we extract the midbrain area. The FA Image stacks are

used for automatically segmenting the Putamen. The registration is required for placing

the segmented Putamen on the EPI stack for tractography. This process for determining

the neuromotor tract uses the detected volumes of interest on the EPI, where the di�usion

tensor are..

Prior to the detection of the volume of interest, there are several elements that need

to be integrated in our automatic system providing the processing with the images and

additional information for handling. The geometry elements, determined in the previous

chapter, are used by the processing methods. Our automatization process using the DTI

image starts by using the already available elements:

• EPI/FA images without skull

• The inter-hemisferial axis

• The center of mass of the brain Xc, Yc, Zc

• The position of the patient on the image (Ox,Oy,Oz)

The pre-processing level had to overcome the low resolution of the images. The same

problem can a�ect the automatization of the detection process applied for the volumes of

interest using the relative position of the anatomical structures. As reference point for this

case we can use the center of mass of the brain (Xc, Yc, Zc), as its position is not in�uenced

by the patient variability.

Another problem that we have to surmount is the human intervention by the segmen-

tation algorithms. The segmentation methods have to detect the anatomical region of
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interest on the axial slices. The volume representing the anatomical structure is obtained

like the brain volume by generating the stack. Each axial slice provides a sectional view

of a particular section of the brain, comprising di�erent parts of the volumes of interest.

Among the slices constituting the brain volume for segmentation we need the particular

one (or several) containing the required anatomical structure. This speci�c slice represents

for the segmentation algorithm the slice of interest (SOI). In order to start the algorithms

at the right place on the right slice, the position of this slice must be determined �rst. This

position represents the placement of the axial plane (Ox and Oy axis inside the volume)

relative to the coronal(Ox and Oz axis of the volume) and the sagittal (Oy and Oz axis of

the volume) plane views on the Oz axis of the brain volume.

The detection on the central axis of the brain for the slice of interest represents the

algorithm for placement inside the brain volume.

Inside each slice the brain anatomy consists of several structures. Finding the needed

structure starts with determining its position on the 2D slice. This algorithm performs the

placement inside the slice with identi�cation of the right place for the volume detection.

Developing the proceedings presented in �gure 4.1 we illustrate in �gure 4.2 the re�ne-

ment progression used for the information. This entire implementation of the automatic

system representing the proceedings in this �gure constitutes our prototype named PDFi-

bAt@ls. The �gure represents the information re�nement hierarchical evolution, starting

at the DICOM standard and �nishing by providing the clinical PD value of severity. The

midbrain and the Putamen segmentation require speci�c automatic algorithms at the pro-

cessing level in the informational context. Our study is based on their accuracy at the

anatomical level. In the processing procedures we use image processing and analysis al-

gorithms for accurately determining the required information from the EPI images and

further use it for �ber detection. The registration process is making the transition at the

feature level. The information analysis at the feature level performs the tractography on

the EPIs and extracts the neuromotor tract. By analyzing the �bers at the knowledge level,

we determine the correlation of these features with the PD severity to distinguish the link

with the disease and their relevance for our study.

There are several steps to be followed in transforming the information from the visual

level into quantitative information. The pre-processing level prepares the image for the

algorithms that extract speci�c information concerning the anatomy and pathology of the

subject.

4.1 Context for DTI information processing

There are systems using DTI images in analysis and processing, providing di�erent features

and data for the user. Analyzing the performances of these methods on our database

we are able to determine the capabilities of similar systems. We can evaluate the new

prototype PDFibAtl@s including our methods by comparing it to the results obtained with

the other systems. At the method level, the analysis provides the strengths and the weakness

determining additional challenges four our information processing level.

All the systems presented are freeware and are speci�cally dedicated to DTI medical

image usage. Additional systems have been tested, but the images either did not provide

any result or the program closed during processing or even stopped the machine while

processing the data. The systems presented here provided the best results for our images.

They are tested from several perspectives, corresponding to our steps, in the DTI infor-

mation management steps:
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Figure 4.2: Proposed approach for image processing and analysis, the main informational

level stages on our study.

• Management of DTI images (12 di�usion directions)

• Segmentation procedures

• Registration capabilities

• Tracking algorithms using one or two regions of interest

A global evaluation of the systems demands all the perspectives to be considered and

additional validation from the neurologist based on the results. Local evaluation refers to

an analysis of the methods implemented by the systems. A general presentation of the main

capabilities of the systems precedes the presentation of the local evaluation in the context

of each required task in our informational context.

The MedINRIA system1 represents a French project by INRIA laboratory in Sophia

Antipolis and provides a series of applications for medical image processing and visualiza-

tion. As underlined by the Asclepios site, the main interest points provided by this software

are the Log Euclidian metrics - metric for tensor estimation, HARDI - high angular reso-

lution di�usion imaging, �ber tracking, block matching, di�eomorphic demons- de�ned in

registration and DT-Re�nD- registration technique [Vercaunteren 2008b].

The project is structured in independent modules, implementing di�erent algorithms,

that o�er just speci�c features when needed: the DTI Track module or the tensor viewer

module, the Fusion module for registration and another module only for DICOM manage-

ment and preparing the image stack for the DTI Track module.

1MedINRIA - http://www-sop.inria.fr/asclepios/software/MedINRIA/ - last accessed on May 2010

http://www-sop.inria.fr/asclepios/software/MedINRIA/
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Figure 4.3: Result image when using the 3D Slicer Atlas

The entire project is implemented using ITK2 for image processing and VTK3 for vi-

sualization capabilities. The DTI Tracker was one of the tested modules for its method

in �ber tractography, together with the Image Fusion module, the one providing several

methods for image registration.

3D Slicer is provided by the MIT AI Lab with the Surgical Planning Lab at Birmingham

and Women's Hospital, as presented on the home page4. The project represents a collection

of algorithms and applications dedicated to medical imaging. The DTI management o�ers

a 3D image viewer and tracking algorithms, as well as registration methods [Talos 2003].

The Slicer provides also an atlas for segmentation of the brain, specialized for DTI images

(Fig. 4.3).

The system is developed in Visual C, using visualization libraries and advanced comput-

ing algorithms like VMTK (vascular modeling toolkit).

Matlab based systems (SPM and VBM) - Statistical Parametric Mapping (SPM)-

used in our feasibility testing due to the multitude of functions and dedicated methods is

a plug-in software that extends statistical processes dedicated to the functional imaging

data. The software package performs brain image processing and analysis5. This plug-in

software is designed for the Matlab environment. The version of SPM5 accepts DTI images

2ITK - imaging toolkit http://www.itk.org -last accessed on May 2010
3VTK - visualization toolkit http://www.wxwidgets.org - last accessed on May 2010
4Slicer - http://www.slicer.org/ - last accessed on May 2010
5SPM site -http://www.fil.ion.ucl.ac.uk/spm/ - last accessed on May 2010

http://www.itk.org
http://www.wxwidgets.org
http://www.slicer.org/
http://www.fil.ion.ucl.ac.uk/spm/
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for processing providing alignment and pre-processing methods using the fMRI dedicated

module.

The Voxel Based Morphometry (VBM)6 represents another module that can be inte-

grated in Matlab with SPM, as a plug-in in SPM5. This module is able to make segmenta-

tion in WM and GM based on voxel-wise comparison.

The TrackVis 7 with the dedicated Di�usion Tracking module uses linear least- squares

�tting method and o�ers Q-Ball/Hardi reconstruction [Wang 2007]. It uses standard FACT

for �ber tracking, but we test the Runge-Kutta method as we are using a similar method

in our approach.

These methods are implemented in C and the visual elements together with the image

processing are created using the VTK library. The Di�usion tracking module performs the

image processing taking the DICOM �les and delivering the computed �ber tracts. The

TrackVis module o�ers visualization for the �bers and the possibility to segment the images

and extract bundles of interest from the computed tracts.

4.2 Segmentation methods for brain images

The aim of segmenting images is to classify sections of pixels based on their intensities,

de�ning regions of pixels with the same intensities and/or similar intensity. These regions

have a certain homogeneity that is characterized based on a scale or on the fractal features.

They can also be de�ned by their boundaries or their interior. When de�ned by their

boundaries, a contour-based approach tests is needed to determine whether each pixel

appertains or not to the speci�ed contour. When based on region de�nition, we usually

need several features that cooperate for its de�nition: compactness, projections, moments,

texture and co-occurrence matrix [Sonka 2009].

Analyzing the co-occurrence matrix, we can de�ne a histogram so that the features

designated for the morphological characterization are also applicable for classi�cation of

the pixels. In this case, the energy is used as a direct measure of homogeneity and the

entropy as an inverse measure. The maximum probability and the contrast utilized as a

measure of local image variation, permit the texture to be classi�ed. The correlation inside

the matrix can di�erentiate among regions of pixels at the histogram level.

When analyzing the voxels for classi�cation, many approaches could be chosen, depend-

ing on the �nal goal of the process: for a pathologist, a classi�cation might be needed to

distinguish between sizes of cells, whereas for a radiologist, it is more useful to know if the

textures in certain regions are similar. The choice of features used for classi�cation can

be made depending on the �nal purpose. These features are introduced in a classi�er and

produce the class decision. For a robust classi�cation, knowledge of the medical area can

be used, if available. In this case, we can de�ne a parametric classi�er that decides the �nal

clusters, based on additional knowledge [Bankman 2009].

We can use the discriminatory power of the features for classi�cation, but we need

classi�er-independent feature analysis (CIFA) [Sonka 2009]. Feature analysis used for clas-

si�cation purpose usually treats the discriminatory power from the classi�er point of view

- classi�er oriented - by choosing the classi�er typology and just then the classes are deter-

mined by running the classi�er with the selected features. The accuracy of the classi�cation

6Voxel based morphometry (VBM) -http://en.wikipedia.org/wiki/Voxel-based_morphometry - last
accessed on May 2010

7Di�uion toolkit -dtk - http://www.trackvis.org/dtk/

http://en.wikipedia.org/wiki/Voxel-based_morphometry
 http://www.trackvis.org/dtk/
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represents, in this case, the discriminatory level of the used feature. When choosing a data-

oriented approach, the features are ranked using inter-class speci�city. CIFA is speci�c

to diagnosis problems as its purpose is to optimize the classi�cation performance. This is

possible by performing a feature analysis based on the structure of the features extracted,

determining thresholds based on the discriminatory power of the features and using these

thresholds for a more accurate classi�cation.

Computing the relative feature importance (RFI) o�ers the possibility to rank the fea-

tures according to their usefulness and to include, at the same time, the medical knowledge

in the ranking process as a diagnosis criterion for classi�cation. The algorithm proposed in

[Sonka 2009], estimates the separation between classes using each new feature. In this case,

the weighted absolute weight size (WAWS) de�nes the limits between classes using eigen-

vectors and eigenvalues. For estimation on the RFI, in order to choose a metric distance,

accurate KNN is usually used. Also, a weighting factor after estimation of these features

can be attached so that the features lead towards a correct diagnosis.

In our study intra-patient variability can a�ect the segmentation results and RFI is able

to remove this factor. A knowledge-based segmentation takes into account the features,

their spatial constraints and the anatomical elements. For a low-level segmentation, the

spatial constraints are included in the algorithm, with the ROI speci�city set as boundaries.

Using active contours implies fuzzy logic application for high-level segmentation. In this

case, for more accuracy on active contours, internal and external constrained forces and

additional knowledge are introduced. For the same purpose - more accuracy for edges

and regions - some rules can be introduced based on the medical knowledge based on

the intensity or the spatial structure values. Uncertainty can be taken into account not

only with fuzzy logic, but also by modeling and classifying the anatomical variability, with

multiple subject analysis and evaluation of spatial distribution in normal anatomy. Our

requirements for integrating the variability and achieving a fully automatic management of

the DTI information, incline towards segmentation based on active contours to overcome

the intra-patient variability.

4.2.1 Segmentation context

There are several manners for managing tissue classi�cation to determine the delineation

of anatomical structures or for organ limitations. The atlas-based approach represents one

of these modalities. It uses a pattern that can be applied on any brain to determine the

position of anatomical structures inside the brain and extract them. There are several

brain patterns used in segmentation algorithms. The inconvenience of this approach

is represented by the fact that these algorithms do not take into account the patient

variability. It has to provide an atlas for all the demographic type of patients (Asians,

Europeans, African). Also, a registration between the atlas and the image is needed for a

correct coincidental placement.

Another approach integrates the intuitive way for detecting the main tissue types: bone

(skull), WM, GM, CSF. This technique analyzes the pixel intensities and is able to determine

the similarities that constitute the same type of tissue. The technique is dependent on the

image quality and the threshold set by the user to make the di�erence between tissue

types, managing the sensitivity in this way. Computing the entropy values and setting up a

threshold for the main tissue type de�nes the classi�cation. This method parses the images

and places the pixels according to the threshold and the entropy values. The sensitivity

represents the main challenge of this approach.

This segmentation method proposed by SPM is able to determine all the main brain
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anatomical structures, but it does not automatically overcome the inter/intra-patient vari-

ability. The intervention of the user is needed. The tissue segmentation used in our feasi-

bility study is not applicable for detecting volumes of interest.

The systems that we are testing have di�erent approaches for the segmentation. MedIN-

RIA provides a manual segmentation for the regions of interest. The same accuracy, using

the manual approach as well, is provided by the TrackVis module. 3D Slicer and SPM

provide atlas-based approaches. 3D Slicer does not manage to �nish the computation for

our images and the SPM results are blurry and inaccurate.

4.2.1.1 Atlas-based segmentation

The brain atlases describe a representation of the brain, with anatomical elements and

their spatial relationships, the proportionality between these structures. They are used

in registration, warping strategies and annotation systems. There are specialized atlases

for the brain, but there are also limitations due to the demographic parameters and the

imaging clarity. One of the most used atlases is the Talairarchi Brain Atlas, integrated in

several systems (SPM is using this atlas). There are also deformable brain atlases, where

the anatomic variability is managed by spatial normalization schemes. The drawback of

these atlases is represented by the fact that not all the brain structures can be captured and

molded by these algorithms. When talking about the brain, the variability is manifested

on every metric.

We use the �xed atlas approach on the images from the SPM segmentation module.

Typically, the brain atlases are used for highlighting and/or extracting the volumes of

interest. The �xed atlas approach is not applicable in our case, due to the fact that we

have a brain database from Singapore, containing not only Caucasians, but also Asians. In

this case, a mapping of the brain is not accurate enough. A speci�c atlas that contains

automatically detectable anatomical volumes, represents a tool that can be applied to any

type of patient, o�ering the necessary malleability.

Another use for the atlas is to determine the position and the placement of di�erent

anatomical structures inside the brain. In segmentation, �nding the VOI inside the image

stack, as well as its placement at the image level, is usually done by the user or is based

on the atlas geography. In our case, we are making this step automatic, by introducing

several placement algorithms before the segmentation stage starts, without using any atlas

in determining these positions.

Based on the tests e�ectuated using our images on the existing modules implementing

di�erent segmentation methods, the most accurate one is the manual segmentation, but

it does not represent a possibility for our prototype. We need a fully automatic approach

with methods for placement and preparation. The atlas based algorithm is not accurate

and does not take into account the variability at the patient level or the di�erences among

images, but the relative positioning inside the image is known.

4.3 Our DTI image segmentation approach

An automatic segmentation process taking into account the variability poses two problems:

�nding the targeted volume and extracting the correct volume. As we are not using an

atlas based approach, the targeted volume is achieved by medical knowledge and using

geometrical landmarks. For the extraction process, we de�ne an adaptive method that has

to overcome the patient variability.

The segmentation process is part of the mathematical morphology as well, as it labels

areas in an image according to their intensities. The watershed-based segmentation, applied
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on overlapping and non-overlapping particles, represents one of the reference algorithms

together with the gray-based algorithm. For our imaging types, since we have a complex

color image, we use KMeans segmentation for di�erentiating the brain tissue and we work

on the map image stack.

4.3.1 Preparing the stack for segmentation

There are several aspects before detecting the volume of interest. As anatomical structures

have speci�c locations, just like the placing of the heart inside the thoracic cavity is on the

left side, the anatomical brain structures have speci�c locations inside the brain as well.

This is the reason why we �rst need to �nd the reference marks, in order to treat all the

brain volumes using the same approach. We consider the relative positioning to a standard

point. We have chosen this point to be the center of mass of the brain, represented by

the image axes with the variables (Xc, Yc, Zc). The detection of this point is detailed in

the previous chapter. The approximated placement of the algorithm depends on the center

of mass of the brain volume determining the algorithm for the placement inside the

brain volume, which is further tuned for a better detection. This tuning is relative to the

positioning of the patient inside the image, part of the inter-patient variability parameters

(see section 3.6.2). The head placement higher or lower on the image stack, determines a

placement higher or lower for the slice of interest on the central axis of the brain.

Detecting the slice of interest (SOI) starts from the center of mass of the brain.

Considering the placement of the anatomical regions (volumes of interest), we can approxi-

mate the position of the required slice. For the midbrain, we consider the slice of interest 8

mm lower than the center of mass and for the Putamen area, 2 slices higher than one that

includes the center of mass. Due to this manner of placing the slice of interest according

to the center of mass, there are several patients that do not perform well. These are the

patients that, in the volume acquired in our images, do not have the entire brain volume

and the content is shifted more towards the neck. In this way, the patients do not possess

the needed slices containing the upper part of the brain (e.g.the hand commissure- often

used as a landmark in alignment and/or registration might not be present for all the cases).

This approach used for detecting the slice of interest was not very helpful due to the

di�erentiated brain volume content on the image stacks. Some of the patients are placed

higher or lower on the sagittal plane. The center of mass in this case is positioned relative

to the object inside the image, which can contain the entire brain or just a part of it. For

the cases with smaller brain volume, the stacks include the entire brain, for the others this

is not possible. In order to establish the position and the content of the brain volume, we

select the �rst and the last axial slice in the stack and we extract the volume for each of

the objects from these slices. We establish thresholds for approximating the position of the

midbrain relative to the determined center of mass of the object in the stack, representing

the brain section. The evaluation of the threshold is estimated in equation 4.1.

Pslice =
V olZslice

V olFslice
∗ 100

ST
(4.1)

where V olZslice and V olFslice represent the volumes of the objects in the slice with the

determined center of mass, respectively the �rst slice on the stack; ST is the slice thickness

(4 mm) and the values for this parameter place the midbrain by using the thresholds:

• Slice 0 if Pslice<60

• Slice 1 if 60<Pslice<70

• Slice 2 if 70<Pslice<85
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• Slice 3 if 85<Pslice<100

These threshold values represent the statistical established studies with regard to the mid-

brain position and its placement relative to the percentage determined. If the stack is

not correct - if it does not contain the minimum slices for the midbrain and the Putamen

detection - we transmit an error value for the slice of interest (-1). Once this position is

determined, the Putamen algorithm starts with two slices above the midbrain slice - one

slice completes the midbrain volume and the second one includes the AC/PC line. We

adjust the Putamen slice if the detected volume is too small (20 pixels) or if it is placed

too near to the midline. If this is the case, it means that the brain is placed higher on

the central axis and we will �nd the Putamen one slice above the one we have placed our

algorithm.

In order to start the tracking process at the tissue level, the position of the region

of interest on the slice must be determined �rst. We need to �nd the placement of the

anatomical region inside the axial image for which we extract the volume : placement

inside the slice, with storage of its position for further usage on other slices in completing

the volume detection.

Detection for the starting point of the volume of interest in the midbrain area is done

similarly to the detection of the slice of interest and it is combined with the hemispheres

separation. The actual algorithm that designates the hemispheres limitations de�ning the

inter-hemispherial axis is presented in the previous chapter. The limit is used for the

algorithms determining the volumes of interest for providing a better image processing time

by considering only one hemisphere at the time. The algorithm for �nding the midbrain

structure starts from the center of mass of the brain section inside the slice of interest and

following the inter-hemispherial axis tests for a gray matter region on a segmented tissue

cluster map.

Detecting the starting point for the Putamen detection algorithm is di�erent from the

one used for the midbrain, as the Putamen is not placed on the inter-hemispherial axis and

does not have a geometrically detectable point next to it or a standard distance from one of

the landmarks. We are working on the FA image as it contains the anisotropy that follows

the dopamine �ow and makes the Putamen more distinguishable than on the other type of

images. Our algorithm is based on the placement of the two areas relatively to the center

of mass of the image. As this is a more complex matter there are several steps performed

for achieving an adequate positioning inside the image and eliminating the inter-patient

variability:

• Classi�cation of images (SOI) based on the head shape

• Segmentation on tissue type based on the voxel intensity

• Validation of the Putamen region based on the placement of the center of mass

The �rst step represents a rough categorization of the head based estimations. De�ning

three main classes based on the position of the center of mass with regard to the image center

we estimate the patient positioning. The second step is meant to distinguish the tissue type

and ease the search for the Putamen. This segmentation is performed using the KMeans8

plug-in based on an existing approach [Jain 1988]. The same segmentation method is used

for detecting the position of the midbrain when following the inter-hemispherial axis. The

number of clusters used for this method is based on the tissue types that the image contains.

The tolerance is set as the default value together with the randomization seed. The image

8IJ Plugins: Clustering http://ij-plugins.sourceforge.net/plugins/clustering/index.html - last
accessed on June 2010

http://ij-plugins.sourceforge.net/plugins/clustering/index.html
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containing all these clusters represents the map for the algorithm used for detecting the

volume of interest. Based on the map image and the medical knowledge, our algorithm

starts from the center of mass and follows the inter-hemisphere axis. Depending on the

category established at the �rst step, the algorithm chooses the proper height relatively to

the image axis for hemisphere exploration on the left and the right side. Parsing two tissue

types and reaching the CSF, represent the indicator that the next to this tissue resides the

Putamen. On this tissue, we can apply the active volume tracking algorithm.

4.3.2 Volume Segmentation Algorithms - Active volume segmen-
tation

The process of active volume determination is performed for each axial section, at the slice

level. The volume at the stack level is determined by using additionally the preparation

algorithms. At the slice level, after determining the starting point for the active tracking

algorithm on the SOI, we move on to the active detection process de�ned by growing the

considered region. This detection is performed on the map images generated by the KMeans

method. The threshold for the growing algorithms is represented by voxels appertaining on

another tissue type, di�erent from the one we are exploring. Depending on the anatomical

region detected and the explored hemisphere, the detection algorithms limitations di�er.

Nevertheless, after this exploration is �nished, we apply the same approach on the next

slice having as staring point (seed) the center of mass of the previously detected region.

At the end of the process, we compose the extracted volumes by making a stack from the

extracted ROIs.

Considering a generalization on the active volume-tracking algorithm, there are several

main steps to be followed:

• Seed placement inside the ROI

• Considering new points for the ROI extension

• Comparison with the voxels in the ROI and threshold elements

• Validation of the considered voxel as part of the ROI

These steps are further adapted and re�ned to �t our image resolution and the determined

anatomical shapes.

The algorithm for detecting the volume of interest representing the midbrain

structure possesses two detection steps: the de�nition and detection of the region of

interest and the volume detection. For the region of interest, we use a snake-based algorithm

applied on the segmented image map obtained with KMeans in imageJ. This map image can

detect the surrounding CSF delineating the midbrain. On the gray matter class obtained

in this manner, we perform the snake-based algorithm that is set to start from the center

of mass of the object in the slice of interest and depending on the side of the brain that we

are exploring, our algorithm selects each pixel and compares it with the anterior validated

one. This exploration step ends when there is a di�erence between the new pixel and the

previous one or when reaching the midline representing the inter-hemispherial axis. After

�nishing the region growing algorithm on one slice, we explore the slice above it in a similar

manner. As we know from the study presented in [Starr 2009], almost 80% of the SN is

found in one slice (4 mm) and we want to make sure that our volume of interest contains

this anatomical region. In this situation, we take the two slices that most probably contain

the SN in the midbrain segmentation.
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(a) EPI with detected midbrain
and �bers

(b) EPI with detected Putamen
and �bers

(c) 3D image of �bers detected
passing through VOIs

Figure 4.4: EPI with detected VOIs in 4.4(a), 4.4(b) and 4.4(c) with 3D �bers on an

example

(a) FA image clustered (b) FA image with detected Puta-
men on the left side

(c) FA image with detected Puta-
men on the right side

Figure 4.5: FA image with Putamen detected[Sabau 2010]

In �gure 4.4(a), we illustrate the detected volume of the midbrain for both sides of

the brain hemispheres and the �bers projected on the EPI. In �gure 4.4(b), after manual

segmentation of the Putamen volume on the FA images and registration on the EPI for

both sides, we use it for �bers detection. In �gure 4.4(c) we display a 3D view of the �bers

passing through the detected volumes of interest. For the Putamen volume detection,

we take into account the shape of this speci�c anatomical region and we construct a totally

di�erent algorithm from the one used for the midbrain. This method must overcome several

obstacles: the placement of the Putamen that is not necessarily at the same level on both

sides, its size di�ering from one hemisphere to the other, as well as its shape. As the FA

image o�ers a better contour of the Putamen than the other type of DTI images due to the

dopamine �ow, we perform the detection on this type of image. The KMeans image map

is applied on the FA image on the same manner like the one used for the EPIs.

The Putamen shape on the slice of interest - the slice above the one containing the

AC/PC line- is triangular, whereas the slice above this one is more quadrilateral. This

is the reason why if we want a high accuracy, we have two approaches for the algorithms

used on the Putamen tracing. One of these algorithms starts from a triangle placed at the

seed's place. This triangle moves its vertices only on the class of voxels appertaining to
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the ones of the seed. It stops when reaching another class (3-5 consecutive voxels di�erent

from the ones constituting the VOI). The same manner of operating is applied for the other

approach, except the fact that it starts from a quadrilateral shape, moving at each step

four vertices. We adjust the obtained shape by comparing the left and right side limits and

the positioning of the VOIs in each hemisphere.

Figure 4.6: Putamen detec-

tion on the FA image

As shown in the �owchart from �gure 4.6, after the posi-

tioning at the volume level on the slice of interest, the algo-

rithm has to determine the relative position of the head inside

the image. Depending on that position, we choose the starting

point for the active volume detection. Once the starting point

positioned, we choose the suitable algorithm for the shape ex-

traction. We apply the triangular shape growing method for

the right side and the quadrilateral one for the left side and

the upper slices of the detected volume. These algorithms di-

vide the starting point into three, respectively four points (�g.

4.10). The three-point algorithm follows the triangular shape

of the Putamen, which is more obvious on the slice with the

AC/PC line. The choice was made by statistically determin-

ing the di�erence between the two algorithms and the manu-

ally segmented images that represent the ideal segmentation

shape.

Both algorithms consider the extension of the region of

interest by taking each pixel next to the ones that represent

the initial detected cluster. If the pixel appertains to the clus-

ter of the initial points, it becomes one of the shape de�ning

points - the edge of the triangle for the three points segmen-

tation algorithm, or the edge for the quadrilateral algorithm.

The active volume determination stops when other clusters

are encountered.

The detected area is placed by balancing the one deter-

mined for the other hemisphere. After positioning the two de-

termined areas, the algorithm is repeated for the upper slice

to complete the volume extraction. The seed for this slice is

considered the center of mass of the determined region from

the initial slice. The slices with the determined regions are

transformed in mask images that are further transformed ac-

cording to the parameters acquired from the registration algo-

rithm. The registration is the consequence of the fact that the

Putamen segmentation is performed using the FA image stack.

This volume of interest is intended for usage on the EPI stack

on the tractography algorithm. A registration among the EPI

and the mask stack of the detected Putamen is needed.

4.4 Registration for the volume of in-

terest

The registration is imperative for our overall approach, as we need the Putamen detected

volume for tractography. By placing the detected area from the FA image on the EPI stack,

we are performing a transfer of information from one DTI type to another one.
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Presenting a short context of the registration methods with emphasis on the elements

corresponding to our needs, we are determining the most suitable approach together with

the necessary elements for it.

4.4.1 Registration context

The registration process performs matching or bringing the modalities to spatial alignment

by �nding the optimal geometrical transformation between corresponding image data. For

any registration algorithm there are four basic steps representing the activities included in

the method: choosing the �xed image and the transformed one, choosing the landmarks,

evaluation of the di�erences between the two images and the transformation of the movable

image[Clatz 2009]. Depending on the way these steps are performed, the registration algo-

rithms can be evaluated. There are several classi�cation methods, depending on the basic

activity considered.

• Landmarks: Landmark-based (Finite Element Method(FEM) registration) vs. non-

parametric registration(Fluid registration, Elastic registration)

• Di�erences: Geometry-based (a�ne registration, BSpline based registrations:

NURBS) vs. Intensity-based (Standard Intensity Based Registration (SIB))

• Transformation: Rigid (A�ne registration, Iconic registration) vs. Non-Rigid(Fluid

registration, Di�eomorphic registration)

There are registration methods that can be included in two or all the three de�ned cate-

gories, as they use algorithms from several categories. The elements de�ning each category

are linked to the �rst registration de�ning steps. On a registration algorithm the three

categories are combined for a successful approach. Considering each category apart, we

illustrate the elements by de�ning the linking to the registration activities.

The landmark-based registration uses speci�c parameters as landmarks. Hard landmarks

(prospective) or soft landmarks (retrospective) with respect to the imaging process designate

the types of parameters requires by this registration methodology. The non-parametric

image registration techniques are based on force computation to solve the di�erences until

the two images converge [Gholinpour 2007].

Based on the method for determining the di�erences between the two images, the

two possible approaches consider either geometrical positioning of the pixels/voxels

or their intensity value, where the appropriate distance can improve the registration

[Theverovskiy 2006]. There are several ways to choose the appropriate distance in this

case: based on the intensity di�erences, on the correlation or on mutual information. All

these cases de�ne an optimal linear registration. The standard intensity based (SIB) regis-

tration uses the intensity similarities to quantify the quality of the registration. The Iconic

Feature Based (IFB) registration has elements of both methods using the geometric ap-

proach for distance evaluation on the corresponding features, however the correspondence

is based on the pixel intensities [Thomopoulos 1994] [Cachier 2003a] [Cachier 2003b].

The third criterion for classi�cation is represented by the transformation method. The

rigid transformation method de�nes a mechanism that does not change the volume or

the relative positioning for the image content. The non-rigid transformation uses physical

transformation altering the image composition [Maintz 2000]. Feature-based registration

or geometric registration extracts the feature points and, computing the displacement be-

tween these points, is able to �t a transformation with or without regularization. The

intensity-based registration prepares the transformation for optimizing the similarity by di-

rectly minimizing its value. These methods a�ect the voxel values by changing the image
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gray level without prior segmentation [Wirijadi 2001] [Zitova 2003]. The dispersion in the

distribution of the image gray values is evaluated by the entropy measure.

Depending on the image represented and the purpose of the transformed image, there

are several registration methods that take for each step one of the two possible approaches.

One of these cases is the Finite Element Method (FEM), included in the ITK library. This

method is based on BSplines and computes the displacement between the images using

a grid evaluation [Klein 2007] [Sidka 2008]. This grid de�nes a mesh that can be consid-

ered adaptive, uniform or even anatomy-based. Using physical transformation (Triangu-

lar, hexahedral, tetrahedral, etc) the moving image is deformed to the model [Park 2004]

[Pluim 2000] [Dinov 2002]. This approach is linked to the speci�cations given for the geom-

etry and the behavior of the elements, as well as the boundary conditions. As such in this

case, the registration is a landmark�geometry�non-rigid one.

For a landmark-intensity non-rigid registration example, we can name the di�usion reg-

istration method. It is de�ned by a gradient-based regularization used for a �nite di�erence

approximation in the partial di�erence equation. Starting from this approach, Thirion in

1995 [Tharin 2007][Vaillancourt 2009] de�ned a performing non-rigid registration based on

"demons"- di�usion functions. The main challenge and the key in this approach is the

placement of each "demon" in the image domain [Vercaunteren 2008b]. The "demons" are

functions that decide the movement of particles on the template image so that the disparity

is minimal [Yeo 2009]. This approach is recommended on large dimensional image data, but

measuring smoothness by oscillation of gradients and the fact that it does not represent the

actual physical image characteristics represent drawbacks [Vercaunteren 2008a].

From the non-rigid registration methods the elastic and �uid registration methods are

delineating, using basic physical laws on the intensities places them under the intensity-

based methods and the initial checkpoints de�ne them as landmark-based classi�cation.

The elastic registration is justi�ed by the deformation of a body or the tissue [Bagci 2007]

[Pew-Thian 2009]. Tensors are used to limit the boundaries for the shape matching. The

�uid registration compared with the elastic registration uses the basic �uid mechanics for

regularization [van Heckle 2007]. These techniques are not recommended for hand and

brain images registration, as these tissues do not deform following the mechanics included

in these techniques [Gilles 2008]. If the �uid and di�usion registration depend on pre-

registered checkpoints (landmark-based) in the image domain, the curvature registration

does not need these parameters. This type of registration does not depend on the initial

points and data (non-parametric), but it changes the shape of the image elements.

A transformation that includes translation, rotation, scaling and other a�ne transforms

represents a linear transformation and does not a�ect the image information. This transfor-

mation de�nes an a�ne registration[Modersitzki 2004]. When using the local a�ne trans-

formation guided by a global a�ne transformation with mutual information and anatomical

mask, the piecewise a�ne registration is performed [Theverovskiy 2006]. Completing this

approach by using common information generated by mutual information-based thin-plate

spline determines a piecewise a�ne initialized spline-based registration[Clatz 2009]. The

landmark and intensity based registration methods are part of the non-rigid category of

algorithms.

4.4.1.1 Challenges for registration

The main problems in registration are encountered at the beginning, when analyzing the

data that the registration is meant to align. Aligning images from the same modality or

di�erent ones determine di�erent approach for measuring the distance and for the trans-

formation techniques. The same elements di�er also for intra or inter-patient registration,
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where the patient variability a�ects the transformation [Modersitzki 2004]. Depending on

the components displayed by the medical image, limitations are introduced for the trans-

formation approach.

All the registration algorithms generally have the main stages corresponding to the three

activities speci�c for the method:

Feature Detection choosing the boundaries, the contour lines and intersections; distinc-

tive objects spread on the image; common to the two images; not sensitive to image

deformation

Feature Matching correspondence points between features; similarity measures are used

combined with spatial relationship among features;

Transform Model Estimation estimates the alignment of the two images; di�erences

between images have to be removed by registration;

Image Transformation mapping functions and transformations with interpolation tech-

niques; the trade-o� between the accuracy of the interpolation and the computational

complexity

In the context of the current DTI image registration methods , the Fusion Image

module (MedINRIA system) o�ers a manual method, the automatic a�ne registration and

the di�eomorphic registration. Each patient must �rst be processed using the DICOM

dedicated image handler, the Image Viewer. This module provides the image format needed

by the Fusion Image module. There is no inconvenience with this aspect, just adding time

for processing and an extra step. The di�eomorphic demon registration changed the pixel

values on the target image [Vercaunteren 2008b]. It provided a morphed image as result

of the combined pixel values of both target and source image [Ceritoglu 2009]. For some

patients the resulting image was ambiguous and the anatomical detail was not good enough

even for manual ROI detection. The manual rigid registration performed the best from all

the proposed methods in this module. Its accuracy is nevertheless highly dependable on

the precision of the used when introducing the landmarks. These registration methods do

not perform with the accuracy needed by our study. This precision is linked to the correct

�ber detection and any inadvertence at the registration level represents a major drawback

[Curran 2005].

An atlas based registration is tested on the EPI images using SPM5 [Guillaume 2008].

The images are mapped on an atlas and depending on the position of the main anatom-

ical structures with regard to the ones in the atlas where the transformation is applied

[Chetelat 2005]. The problem for our images was the �nal result as the images were folded

on the results and we could not use them further. This registration method includes an

anti-folding method, K-fold cross-validation but this method is conceived for the fMRI im-

ages, not for DTIs.

Complementary to deformation based morphometry (DBM) and tensor based morphometry

(TBM), the Voxel Based Morphometry method is tested [Yaasa 2004]. In DBM the group

di�erence is established using local deformation, whereas in TBM the tensor information

provides the local displacement. In VBM the di�erences in the local concentration of vol-

ume, depending on the tissue type detected at the voxel level, determine the registration

landmarks [Ashburner 2000] [Klein 2009] [O'Donnell 2009]. Completing this method with

a voxel-wise statistical analysis for exact determination of the landmarks provides a better

accuracy [Beyer 2007] [Feldmann 2008]. The warping transformation represents the �nal

step providing the transformed image.
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Another registration method based on the regions of interest used as landmarks is the

one provided by the 3D Slicer [Talos 2003]. This approach is similar with the manual

approach because the user chooses manually the corresponding regions and annotates them.

This technique is strongly in�uenced by the checkpoints and the accuracy of the evaluation

for these checkpoints. The method o�ered results only for a few patients, as it was not able

to complete the process for most of the volumes provided.

The rigid registration automatic method by TurboReg 9 was not developed for head

images and it did not provide the required results. The 3D Slicer [Ceritoglu 2009] provided

good results when using the manual registration method. However, this method was not

only time consuming, but also from the resources point of view disappointing as it stopped

the machine each time, even before completing the computation.

4.4.2 The �tting registration for placing the Putamen

The challenges for completing the registration reside in �nding the best correlation land-

marks in both images, �nding a suitable spatial transformation and, for our type of images,

preserving the tensor direction [Clatz 2009]. In our case, we perform intra-subject registra-

tion, as we match images belonging to the same subject. Our registration is a rigid one, as

it contains only translations and rotations, a�ne transformation, and it is fully automatic.

Mapping the homologous features by using geometrical distances de�nes a geometry-based

registration. This is the case for our approach as well.

The elements that distinguish a good geometry-based registration method are related

to:

• Choice of landmarks and the precision

• Determining the transactional values

For the �st element, we verify the placement of the volume of interest relative to the center

of mass of the brain, as well as the position of external limits of the brain volume related

to the same point. In order to determine the directionality of the image we use the inter-

hemispherial axis and its orientation. It provides the angulations for the horizontal and

vertical plane used in rotation and displacement parameters. All the transformations are

performed on the mask image extracted from the FA stack, keeping the EPI as model.

Analyzing the technique used there are elements from the iconic registration method as

well [Cachier 2003b]. These elements are the anisotropy value used for de�ning the volume

that is registered. As we are not using this information directly for the transformation of

the image, our registration is more geometrical [Gholinpour 2007] [Maintz 2000].

The presented landmarks are determined on both FA and EPI image and the di�erences

among them are computed for determining the transitional values. These values are the

ones from matrix 4.2.

[
x

′
y

′
z

′
1
]
=


cosθx sinθx 0 dx
−sinθy cosθy 0 dy

0 0 1 dz
0 0 0 1



x

y

z

1

 (4.2)

Representing the transformation applied on the FA image has to perform several actions:

rotation, translation and skewness. The rotation angle for the transformation is computed

by taking into account the inter-hemispherial axis. The θx value is the angle between the

axis and the Ox axis of the image and the θy is the angle between the same axis and the

9TurboReg - http://bigwww.ep�.ch/thevenaz/turboreg/- last accessed on November 2009
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Oy of the image. We compute this angle for each image type and the di�erence between

these angles represents the transformation values. For de�ning the angulation presented in

equation 4.3 respectively 4.4, we consider the geometrical display from �gure 4.7.

sinαx =
SPy

I1SP
(4.3)

sinαy =
SPx

I2SP
(4.4)

where SP is the starting point of the hemisphere axis given by the in�exion point (occipital

sinuses at the base of the Occipital Bone of the skull) placed on the lower part of the brain

(posterior area of the brain) and the SPx and SPy are the projections of the SP point on

the Ox respectively Oy axis; I1 is the intersection between the axis and Ox and I2 is the

intersection between the axis and Oy.

We compute the α angle for the FA image and the β angle for the EPI image. The θ

angle is the di�erence between α and β and we use it for the rotation. The translation value

from the transformation matrix (dx, dy and dz) represents the di�erence between the centers

of mass in the two types of images. Another aspect of the transformation is represented by

Figure 4.7: Geometrical view of the registration parameters

the axis orientation. The di�erence between the orientations of the axis determines us to

�ip the transformed image. This orientation is the result of the axis de�nition, as it uses as

starting point (SP) and the center of mass is afterwards used on the image axes. Di�erent

orientation of the axis determines a �ipping of the image in horizontal and/or vertical plane.

Because the FA images are generated on the AC/PC plane as well as the EPIs, there

could not be any skewness problems or resizing aspects.

4.4.2.1 Feature Fusion

Fusing two images refers to the process of morphing them or warping them, at the image

level. Both these techniques represent registration methods used, but they alter one of the

images by incorporating the information from the other image [Singh 2009] [Awate 2008]

[Kor 2004]. In our case, we are talking about fusion from another point of view, as we do
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not want to change the image, we put together information extracted from the image with

di�erent meaning, complementing each other.

The mean di�usivity represents the knowledge encapsulated in the di�usion tensors from

the EPI images. It reveals the displacement of the molecules together with the overall pres-

ence of obstacles represented by the brain anatomical structures. The degree of anisotropy

represents the expression of the molecular displacement in space and together with the

orientation of the anatomical structures is found in the FA images. For an accurate deter-

mination of the �ber tract trajectories, we need all these information. The tensors from the

EPIs cannot be moved, as they represent important data with stored values for each voxel.

The FA image by using the anisotropy guides and helps the detecting of the Putamen with

a high degree of accuracy for the segmentation process. This aspect justi�es extracting the

information from the FA level and infusing it to the image used for �ber tracking.

Putting together information from di�erent sources enhances common characteristics

and adds the speci�c elements from each source. In our case, we fuse information by putting

together the displacement of the di�used water molecules representing the anisotropy with

the tensor information and the anatomical regions. We fuse the information in by using

the detected Putamen mask from the FA image and placing it with the tensor information

inside the EPI. We fuse the two images without blending them [Zitova 2003] or warping

them [Gholinpour 2007], just taking the needed information from one image and inserting

it into the other one by registration [Maintz 2000] [Wirijadi 2001]. In this manner, after

the images are segmented the information from the FA image is registered to the EPI and

further used for extraction and validation purposes. The information about the di�usion

reveals the trajectories of the neural �bers and this information at the tissue level is stored

on the architecture of each voxel of the EPI.

4.5 Image Analysis included by the Tractography

The tractography algorithms are used to evaluate the water di�usion represented by the

tensor information in the EPI images. The angulation information is used to determine the

direction of di�usion for the neural �ber reconstruction. These algorithms are de�ned for

WM �ber tracking, where all the �bers dispose of the same di�usion direction. Although

this is not the case for us, as we are working in the GM, we use the same approach on our

images.

There are two main procedures for the DTI tractography architecture: deterministic

and probabilistic. The deterministic approach connects neighbor voxels starting form an

initial set of points until the angulation or the FA values reach the previously set threshold

values. Probabilistic tractography considers uncertainty of the �ber orientation and uses

probabilistic density functions to determine the �bers. Using DTIs both methods are able

to detect the �bers even in the case of �ber disruption and/or reductions. For a determin-

istic approach the initial points need to be known and there is certain sensitivity in the

estimation of the principal direction of the di�usion. The probabilistic approach needs more

computational time due to the probability functions, but its results are more accurate for

the partial regions.

Another classi�cation considers the method used for determining the next step while

tracking the �bers. From this standpoint, the approaches can be classi�ed in local and global.

Local tractography uses a seed voxel or a ROI as starting point for �ber initialization. This

tracking algorithm takes small steps deciding each time on the direction for the �ber. In the

deterministic approach, only one possible direction is provided as next step, whereas on the

probabilistic approach there are several possibilities for the next step. The downside when
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using the local tractography is the fact that there is no target region de�ned and extracting

a speci�c bundle of interest in these conditions is challenging. The global approach in

following the tracts starts by setting up the source seed voxel or ROI and a similar one for

the target. Using the deterministic method for choosing the di�usion direction provides only

one possible path and the probabilistic method provides more paths again, depending on the

probability distributions. The global tractography is constrained to a speci�c connection

and symmetry between the source and the target [Yendiki 2010].

Based on these approaches new methods of tractography have been developed by

including other parameters when tracking the neural �bers. Descoteaux et al. in

[Descoteaux 2007] use the sharp �ber orientation distribution function (ODF) for a recon-

struction from Q-Ball Imaging. This type of imaging uses probability distributions instead

of tensors. Fillard et al. [Fillard 2009] propose the use of spins with potential energy to

trace the �bers on global tractography - the spin glass tractography method (SGT).

Our approach already has the initial volumes of interest used in a global approach. The

method is set on detecting just the �bers starting at the midbrain VOI and reaching the

Putamen VOI: the strationigral tract. To determine the fact that our images are able to

provide the �bers, we try several tractography methods.

4.5.1 Tractography context

The DTI tracker from MedINRIA system performs �ber tracking for the entire brain. Pro-

viding a VOI, this module can extract just the bundle that passes through that speci�c

region/volume. We cannot select a speci�c �ber direction for tractography. Unfortunately,

the module does not permit using two regions/volumes for re�ning the bundle of interest.

This is the main reason why the local tractography is not accurate enough for selecting the

neuromotor tract. The method tested by using Log-Euclidian metrics on a deterministic

approach (MedINRIA) is not adequate in our case as it cannot accurately select the bun-

dle of interest. The method using the midbrain detected volume provides more than 100

�bers, which is inconsistent with the medical knowledge. The neuromotor tract determined

is wrongly placed on the volume of interest, not only on the SN area indicated by the

neurologist. The number of di�usion directions slowed down the entire process.

The second order Runge-Kutta method included in the tracking from the Di�usion

Toolkit in the TrackVis 10 system was studied as well. This algorithm is a probabilistic

method as it o�ers for each voxel multiple di�usion directions. We tested this method on

our images by applying a global tractography and de�ning the ROIs manually in TrackVis.

The tractography generates, like the DTI Tracker (MedINRIA), all the �bers, but the choice

of the bundle of interest can be re�ned by using two or more regions of interest (see �g.

4.8). Even if this is a fast method and very close to what we need as �nal result from

the tractography, the generated �bers include noise. The number of �bers is correct and

the noise is represented as �bers that cross both volumes of interest, but not all of them

are placed in the SN area from the midbrain. Another global probabilistic tractography

is proposed by FreeSurfer 11: TRActs Constrained by UnderLying Anatomy (TRACULA).

The preliminary testing before release on this method uses 60 gradient directions and DWI

images of 2x2x2 mm or T1 images of 1x1x1 mm [Yendiki 2010]. We did not test this software

as it has not been released yet.

In our case a global approach is much needed, as an algorithm that economizes time is

desirable. The growing step is evaluating just the tensors from a de�ned VOI and starts

10TrackVis - http://www.trackvis.org/-last accessed on July 2010
11FreeSurfer - http://surfer.nmr.mgh.harvard.edu/-last accessed on July 2010

 http://www.trackvis.org/
http://surfer.nmr.mgh.harvard.edu/
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Figure 4.8: The motor tract detected on TrackVis

the growing towards the other determined VOI. In this manner, we will grow just the �bers

that are interesting for us and we will validate only those that reach the second VOI.

4.5.2 Our tractography approach

The initial method introduced by Basser in [Basser 2000] takes into account the di�usivity

directions and the values of the tensors. Le Bihan in [Le Bihan 2001] takes into account the

anisotropy characteristics at the tissue level and determines a better detection of the �bers.

We choose this classical approach because it represents a fundamental way of tracking the

�bers, which we can further develop and modify according to our needs. Our approach is

a global deterministic tractography as it uses the neighbor voxels when tracking the �bers,

providing the seeds as volumes of interest. We are using the thresholds of 0.1 for the FA

value and 0.6 for the angulations, like in the original approach.

Before developing the methods to detect and to select the neural �bers, understanding

the �bers functionality is mandatory. A physiological de�nition of them is necessary as well.

From the anatomical point of view, the gray matter (GM) represents the dendrites of the

neurons and the white matter (WM) corresponds to the axons of the neurons. Neural �bers

represent the link between the axon of a neuron with the dendrite of another neuron. The

anisotropy enhances the neural �ow passing through the axons. The e�ect of di�usion on

the MRI signal is attenuated (A) depending on the tissue type encountered by the water

molecules.

A = exp(−bD) [Le Bihan 2001] (4.5)

It all depends on the di�usion coe�cient b and the tensor D that characterizes the mobility

on each direction of the water molecules [Basser 2000].

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 [Le Bihan 2001] (4.6)
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A, the attenuation, represents the e�ect of di�usion depending on the tensors and the b

coe�cient as shown in equation 4.5 and can be expressed as by the equation 4.7.

A = exp(−
∑

i=x,y,z

∑
j=x,y,z

bijDij) [Le Bihan 2001] (4.7)

For the DTI images, we must �rst estimate the values for Dij using multiple linear regis-

tration from equation 4.7 and the di�usion tensor computation for the degree of anisotropy

from each voxel. This process followed by the determination of the main direction of the

di�usivity for each voxel completes the preparation for each voxel's di�usion value.

Once this step completed, the trace of the �bers can be studied. For this purpose, the

di�usion is represented as ellipsoids at 3D level. The tracking based on the di�usion tensor

values is computed using equation 4.8.

Tr(D) = Dxx +Dyy +Dzz [Basser 2000] (4.8)

For estimation of the �ber trajectories on the 3D space curve, the Feret equation describes it

and, using a tangent vector associated with the tangent eigenvalue, we obtain an estimation

of the tensor.

t(s) = ε1(r(s)) [Basser 2000] (4.9)

where t(s) is the trajectory of the curve s determined by the arc r(s) and represented by

the normalized eigenvector ε1 associated with the tangent eigenvalue. Finding a solution

for r(s) can be achieved by using the Euler method, the Runge Kutta or the Gear's method.

Gear's method is preferred in [Basser 2000] and we follow the same approach.

Retaining this approach, we are determining the �bers passing through the midbrain

area, the �rst volume of interest, and arriving to the Putamen volume on both sides of the

brain hemispheres. The approach used by our system is presented as data �ow in �gure

4.9.

The midbrain area, where the SN resides, is a gray matter volume. The process of

growing the �bers starting from the EPI means actually taking the tensor information

and, based on the anisotropy value, choosing the starting point of the �bers. In the white

matter area, the placement of the �bers is more obvious because the axons represent this

area and the neural �ow is very intense. That is the reason why it is very challenging to

make the �ber recognition and to grow them starting from the midbrain area, where the

predominance of the tissue is the GM.

For our system, we consider the approach presented by Basser in [Basser 2000] and for

the tensors approach we use the approach proposed by Bihan in [Le Bihan 2001]. In the

�rst approach, the algorithm is based on the Fernet equation for the description of the

evolution of a �ber tract. This approach is speci�c to white matter, as the axons form the

white matter. The midbrain area is gray matter. The number of axons in this area is much

less than in the white matter and the �bers are not aligned as the ones in the white matter.

We apply this algorithm in order to see if there are relevant �bers linking the two VOIs

that we can determine ( Fig. 4.4(c)). We use these VOIs to choose the bundle of interest

and separate the �bers that we need from the ones that are not part of the motor tract.

Although we grow all the �bers from the midbrain, we validate only the ones starting

from the midbrain area that also reach the Putamen area. Fibers are not validated if

they are too small, with anisotropy higher than 0.1, or those that do not have the AP

directionality and/or angulations that exceeds 0.6 degrees. The threshold values are the

same used in [Basser 2000] [Le Bihan 2001] [Karagulle Kenedi 2007]. In this manner taking

a global tractography approach the �bers can be determined, without needing the SN clearly

de�ned.
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Figure 4.9: Algorithm used for �ber tracking

The detected �bers have to be evaluated using a measurable value to de�ne them as

features. The transition from the image level to the feature level for the DTI provided

information is determined by evaluating the �bers. For this purpose we de�ne the metrics

from equation 4.10 and 4.11.

FD =
FNr

V olBrain
; FDrel =

FNr

V olV OI
(4.10)

where FD represents the �ber density computed as the number of �bers - FNr - in the

volume of the entire brain - V olBrain and FDrel represents the �ber density relative to the

volume of interest- V olV OI . Computing the �ber volume and the brain volume an analysis

is possible to detect the geriatric e�ects on the brain and on the neural �bers al well.

FV = FNr ∗ Vheight ∗ Vwidth ∗ Vdepth ∗ Fleng (4.11)

where FV represents the �ber volume computed as the product of �ber number (FNr), �ber

length (Fleng) - constant as the �bers must pass through both regions of interest and the

voxel dimensions: Vwidth, Vheight, Vdepth.

According to the medical manifestation of the disease, the �ber density and volume

should be diminished for the PD patients, compared with the control cases. The degradation

of the �bers should also be correlated in direct relation with the severity of the disease

speci�ed by the H&Y scale. Before reaching the evaluation and diagnosis part for our

algorithm, we present our work at the on the processing level, where we extract the basic

image features.

4.6 Medical Imaging Processing Contributions

Reaching for a fully automatic medical imaging processing and analysis system, we created

algorithms for positioning the slice of interest as containing the brain volume, in order
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Pat.ID
Left area

of Putamen

Right area

of Putamen

Relative error

for left

Putamen

detection [%]

Relative error

for right

Putamen

detection [%]

1 77.491 33.005 33.33 26.10

3 24.395 10.045 58.02 77.50

7 61.706 58.836 6.17 30.61

9 64.576 70.316 11.11 57.43

27 50.225 77.491 13.58 73.49

132 66.011 24.395 13.56 45.38

168 66.011 21.525 13.56 51.80

177 54.530 61.706 6.17 38.15

Table 4.1: Preliminary results on Putamen detection [Sabau 2010]

to detect the relative position of the anatomical region to be segmented. These intuitive

algorithms based on the anatomy of the brain and the tissue intensity is applicable for other

volumes of interest.

4.6.1 Evaluation of the segmentation algorithms

There are several characteristics when analyzing the result of a region-based segmentation.

Comparing an image segmentation result to the ground truth-represented by the manual

detected region performed by a specialist-represents one way of evaluating the automatic

segmentation. Another way would be to estimate the overlap di�erence between the ground

truth image and the segmented one. There can be over-segmentation or under-segmentation

when the two images overlap and one of them is bigger than the other one. When there is a

ground truth region that the segmentation does not contain, we are dealing with a missed

region. A noise region manifests as a region identi�ed in the segmented image, but not

contained in the noise region.

Midbrain automatic detection is preformed on the EPI stack with no di�usion direc-

tion (B0 image). The algorithm providing the segmentation is applied on the test set with

the manually determined Putamen (42 subjects) and the results are studied by our special-

ist. Validating the algorithm actually means verifying if it managed to segment the whole

midbrain and just this part, without taking part of the surrounding tissue or the CSF (see

�g. 4.4(a)). This is the criterion followed by the neurologist in validating the algorithm.

For the Putamen detection the evaluation is performed by comparing the manually

segmented images with the automatically detected ones. Performing a logical AND opera-

tion at the image level between the two Putamen slices at the pixel level. We are using the

imageJ Image Calculator on the segmented volumes. We compute the number of the non-

black pixels at the same position on both images. The di�erence area gives the error rate

of our segmentation algorithm. As shown in table 4.1, the area di�erence between the two

methods determines the values found in column two and three of the table and determines

the results in column four and �ve of the table. Also a validation done by our neurologist

is necessary for this step. For the registration performed on the detected volume, we use

medical knowledge for validation and visual evaluation.



4.6. Medical Imaging Processing Contributions 67

(a) FA image clustered (b) FA extracted Putamen
manually extracted on left side

(c) FA extracted Putamen au-
tomatically detected on left
side

(d) FA image clustered (e) FA extracted Putamen
manually extracted on right
hemisphere

(f) FA extracted Putamen au-
tomatically detected for the
right hemisphere

Figure 4.10: Putamen segmentation

4.6.2 Evaluation of the registration method

The registration has the purpose of aligning two images so that they overlap. We need it

for aligning the segmented volume of the Putamen from the FA stack with the one in the

EPI stack. As presented in the context examination of this process, other algorithms do

not deliver satisfactory results from the medical point of view four our images. This is the

reason why we propose a speci�c approach, by automatizing the entire process.

In our method, the registration process with the acquired parameters is fully automatic.

It uses the EPI stack with no di�usion and the FA one. The results can be visually veri�ed

as we are applying the transformation on the Putamen mask. We transpose the image on

the EPI for using it as target in the tractography process.

4.6.3 Tractography evaluation

The motor tract is automatically detected in our case by growing the �bers between the

two volumes of interest: midbrain area and the Putamen. This is consistent with a global

tractography method. After computing the FD and FV on each side of the brain, we

study the e�ects of PD on each extracted bundle of interest. We perform the T-Test

determining the correlation between FD/FV and H&Y scale. As the FD is dependent on

the FV, the two parameters have the same variation. For the medical relevance of the

correlating between the H&Y parameter and the �bers, we test the measures provided
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using WinSPC (Statistical Process control Software). For the simple correlation purpose,

we analyze Pearson's parameter (see Table 4.2 column 2 and 4). We have chosen for

testing in this case the ANOVA method: one way ANOVA, General linear model ANOVA

(MANOVA) and we test the equal variation on density considering the Lavene parameter.

Using the same test as the one from the feasibility study ensures immunity to the external

parameters and o�ers the possibility to determine if the level of correlation determined for

the raw data is the same or better at the feature level.

This evaluation is performed when developing the method and the statistical tests are

applied using the test batch from the feasibility study to determine the in�uence of our

methods on the correlation. When we perform the global testing taking into account 80% of

our data, we obtain p=0.05 for the group homogeneity on the H&Y assigned cases, classi�ed

using the measured �bers from the left side of the brain. On the ANOVA test for the same

cases, the signi�cance is 83% with an N=35 subjects randomly taken by the software from

the total of 42.

Figure 4.11: 3D View of the grown �bers from PDFibAtl@s

Taking a closer look on the testing batches, we can follow the variation of the relevance

degree depending on the demographic elements and with regard to the test taken, just like

we did in the feasibility testing. A signi�cant value for correlation is given when the value

of Pearson variable is lower than 0.01. In table 4.2 we perform the testing for correlation

between the H&Y value and the FV. Our conclusion after this test is that the in�uence of

the testing batch taken into account, a�ects the results. For the test batch 3 on the left

side, we have both variables indicating a very strong correlation, while the other test vary

and appear not to be signi�cant.
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Test Left Side Right Side

nr Pearson P-value Pearson P-value

T1 0.041 0.825 -0.096 0.599

T2 0.107 0.555 0.023 0.898

T3 0.010 0.955 -0.037 0.841

T4 0.108 0.555 -0.101 0.581

Total 0.054 0.735 -0.098 0.541

Table 4.2: Simple correlation between the �ber volume (FV) and H&Y

values[Teodorescu 2010]

Test
One-way

ANOVA
MANOVA

nr FV FD FD

Left Right Left Right Left Right

T1 0.00 0.00 0.00 0.00 0.105 0.515

T2 0.00 0.00 0.00 0.00 0.638 0.067

T3 0.00 0.00 0.00 0.00 0.138 0.404

T4 0.00 0.00 0.00 0.00 0.329 0.404

Total 0.00 0.00 0.00 0.00 0.149 0.629

Table 4.3: ANOVA testing [Teodorescu 2010]

The same testing method Luke the one validated by the feasibility study is used for the

�bers as well. This validated method proved to be unbiased by the in�uence of the demo-

graphic parameters or by the processing methods. The physiological elements represented

at the image level could also in�uence these results. This time, the test batches consider the

correlation and the regression coe�cients. We can distinguish a di�erence between the two

hemispheres of the brain on the results tables. The variations among the testing batches

are the result of the inter/intra patient variability. The One-way ANOVA test is used to

compare three or more unmatched groups and that is the reason we test our results using

this method (�rst 4 columns in table 4.3). MANOVA results are presented in columns 6

and 7 from the same table. On the ANOVA One-way test, the value considered signi�cant

is 0.00. In table 4.3, we can conclude that this test shows a strong signi�cance on all the

testing batches, more than we have obtained from the feasibility testing where the correla-

tion was not always complete and variate ( 86-100 %), while the MANOVA and the Lavene

variable do not show any signi�cance. In some of the cases, the equal variation of density

could not be computed due to lack of a certain type of cases (Table 4.4), while the Lavene

parameter is signi�cant only for the whole database on the left side. These T-test show the

medical relevance of our system, but from the technical point of view, we have to evaluate

the robustness of the algorithms and their speed, as well as their accuracy compared with

the manual detection and extraction. Even if the correlation for all the patients is 83%,

less than the one determined by the feasibility testing, taking the same batch of subjects

and performing the ANOVA test delivers a correlation for each of the tests equal or higher

than the one determined during feasibility. We perform the same test using the de�ned

test batches to determine if the automatic segmentation or the tractography a�ected the

nature, the quality or the quantity of information. These aspects could be altered by the

new measures introduced at the �ber level as well.

These are the premises that are further used on the analysis and prognosis module.
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Test

Test variation

of density

P-value

Lavene

nr Left Right Left Right

T1 0.499 - - -

T2 0.932 0.855 1.33 0.04

T3 0.888 - - 0.57

T4 0.733 - - 0.721

Total 0.742 0.542 0.000 0.921

Table 4.4: Variation of density [Teodorescu 2010]
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I
n the context of the neuromotor �bers extracted for analysis and using the measures we

de�ned for these features, we require algorithms for interpreting these features. The

correlation between the measures and the disease severity validate the relevance of the

features regarding the disease. The informational transfer from the anisotropy level, tested

by the feasibility, reaches the �ber level, tested after the tractography. The DTI information

has been transferred from the visual raw level to the numerical feature one by bridging the

gap from the pathophysiology towards the clinical stage. This stage can be reached only

after the physiology represented by the extracted features can be interpreted using medical

knowledge. The process of transferring the information from the pathophysiology level to

the clinical one and reaching the diagnosis stage with the data provided includes medical

knowledge. Classi�cation methods for di�erent stages of PD using medical knowledge are

required for feature interpretation. This process can be introduced among the transactional

science methods for transforming the information from the visual level to the knowledge

level.

As presented in �gure 5.1, the information analysis stage in our study starts by using

the features extracted after the image processing level. Reaching the knowledge level by

interpreting the features implies the use of analysis algorithms. Incorporating the anatom-

ical knowledge to the attributes from the pathology level provides a larger view for the

extracted image features, o�ering the possibility to be interpreted in the context of diagno-

sis and prognosis. The overall system becomes then a Computer Aided Diagnosis (CAD)

system. In our approach, as in the prototype elaborated from it, managing the features

extracted from the image level and transposing them to the diagnosis and prognosis level

is needed to reach the clinical stage. Overcoming di�erent levels of data abstraction we are

able to solve the semantic gap, at the information level and at the knowledge level, the gap

between the pathophysiology and clinical stage.

As we need interpretation for the speci�c features and we have established that it is linked

to the medical knowledge, the Computer Vision domain is appropriate. This domain is

linked to the two previous domains used for managing the digital images in general and ap-

plied in our approach for medical images as well. Computer Vision algorithms interpret the
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Figure 5.1: Information migration and transformation processes

images and provide the diagnosis at the end. Elements from this domain are recommended

for the analysis stage.

In this chapter, we present the use of fuzzy logic to make the transfer of information

from the extracted and processed features of the motor �bers to the PD diagnosis. Several

aspects need to be considered therefore at the analysis and interpretation stage:

• The di�erence between the control patients and the PD cases

• The di�erences among PD patients having di�erent disease ratings

In any analysis method, the features are �rst classi�ed to determine the manifold display.

A neural network structure constructed as a graph can be used to de�ne concepts or classify

features. Using similarity and medical knowledge a rule-based classi�cation could determine

the place of a feature among the others. The established correlation with the disease severity

determines the number of classes. The characteristics for the features in each class de�ne

the classi�cation criteria. The �rst criterion has to make the di�erence between the control

cases and the PD a�ected patients. Another level of classi�cation with medical knowledge,

speci�c PD pathology, has to be able to determine the PD severity.

In the context of CAD and studying the general architecture of such a system, we analyze

the steps necessary to use the features extracted to determine if they can be used. For this

purpose, we are studying the features homogeneity and their classi�cation according to the

disease severity, but also the scale that the features have to be placed on.

5.1 Computer Aided Diagnosis (CAD) context

The results obtained by the processing level provide the input data for this module. The

correlation tests performed at each stage validated the link between the features variation

and the severity of the disease. De�ning this link represents the challenge for this stage of
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the study. The diagnosis criterions and their applicability help us to integrate the medical

knowledge by using rules. We analyze the H&Y scale and since there is a correlation

between the features extracted and this scale, we transform the statistical correlation by

implementing the rules. This link can be made visible by attaching a variation function

onto the features so that the evaluation of the function determines the disease severity.

Following the function variation and estimating the value of the features for cases that are

uncertain, could reveal the early cases of PD.

Diagnosis aims at making speci�c identi�cation of a problem - a disease, whereas progno-

sis follows the problem evolution to reveal the early cases [Bankman 2009], reaching towards

the source of the problem. While diagnosis is concentrated on the whole picture at a given

time/snap - the raw images features analysis, the prognosis requires more granularity and

reaches on to the detail, as it discovers and correlates the variation of the parameters for

early diagnosis purposes. In our case, the diagnosis determines if a case belongs to the PD

a�ected or the control subjects and if a�ected, it has to determine the degree of severity

for the disease.

As presented in �gure 5.2, there are several stages when de�ning a Computer Aided

Diagnosis (CAD) system. In our case, the �rst stages performing image pre-processing

and feature extraction have already been treated in the previous chapters and we need

a clustering phase at this stage, with the pre-normalization of the extracted features, to

provide the diagnosis.

Di�erent combination of features provide di�erent classi�cation performances and for a

robust classi�cation, fewer parameters are recommended [Sonka 2009]. As clinically PD

is manifested more visible on the left side of the brain, the features extracted on this

side will have a higher trust degree in our CAD. Jain et al. [Jain 1997] provide a large

categorization for feature selection as deterministic methods: stepwise feature selection,

stochastic methods and genetic algorithm feature section, optimal methods with exhaustive

search of all possible feature combination.

The stepwise feature selection is based on successive inclusion of features in the classi�cation

algorithm. Each new feature should improve the classi�cation result. In our case, we have

only the �bers and the VOIs and we include the �bers �rst in the classi�cation process and

then the volumes for a more re�ned selection.

Genetic algorithms are based on the idea of evolution in nature. The solution for these

algorithms must be a string and there has to be a �tness function for correspondence

between the input string and the output one. This variant of classi�cation is not applicable

for our case, as we have no strings. The classi�ers that usually apply for the image based

CAD are the pattern classi�ers. The initial image is processed and features that represent

the pattern are extracted and fed to the classi�er that returns the proper decision class.

When using a classi�er, a training stage de�nes the known classes. The linear discriminant

analysis and the classi�cation trees can also be applied to medical image analysis. The

linear discriminant analysis makes the di�erence between two classes using a linear decision

boundary [Sonka 2009]. This approach is not applicable to our data set. The arti�cial neural

networks (ANN) perform like the linear discriminants, but they use nonlinear approach. It

highlights the underlying density functions of the classes without assuming any rigid form of

limitation. For using this approach we must �rst determine the densities and their attached

functions. Another approach on the classi�ers part is the Bayes decision rule or Bayes

optimal discriminant function. It incorporates a priori information into the determination

of the classi�er parameters for an optimal discriminant function that follows the Bayes

function.

A Rule based system of detection also includes the medical information. The result is

not represented by a decision variable in this case. The Multi objective genetic algorithms
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(MOGA) addresses the di�culties of the optimized rule-based schemes by maximizing or

minimizing the n component of an objective vector function - optimization of the Receiver

Operating Characteristic (ROC) curve.

Figure 5.2: Computer

Aided Diagnosis System

In the situation of totally chaotic dispersion of the features,

fuzzy sets are needed. The non-probabilistic uncertainties de-

�ned as fuzzy sets determine an approach based on fuzzy mod-

els. A fuzzy inference system, or fuzzy model, can adapt itself

using numerical data. A fuzzy inference system has learning

capability and using this aspect the link between the fuzzy

controllers and the methodologies for neural networks is pos-

sible using the Adaptive Network-Based Fuzzy Inference Sys-

tems (ANFIS). These networks have the overall input-output

behavior in�uenced by a set of parameters. These parameters

de�ne functions that determine adaptive nodes at the network

level. Applying the learning techniques from the neural net-

works to the fuzzy sets determines an ANFIS structure. A typ-

ical ANFIS system possess �ve layers [Jyh-Shing Roger 1995]:

• Input layer- determines using a function the premise

parameters

• The rule strengths

• Normalized �ring strengths - weights de�nition

• Consequent parameters - determined using the weights

and the variation functions

• Output - decisional output based on the computed con-

sequence parameters

In our case, the fuzzy sets represent the values extracted after

the tractography. These sets are de�ned on intervals and de-

termine If-Then rules. Together with these rules, the database

(fuzzy sets) and a reasoning mechanism determine a fuzzy in-

ference system. At the reasoning part, we have to take into

account the inference model [Jyh-Shing Roger 1995].

Following an ANFIS [Bonissone 1997] architecture, we can

combine the fuzzy control o�ered by the medical background

and the statistical analysis using neural networks. The fuzzy features represent the a priori

knowledge as a set of constraints - rules. Using Fuzzy Modeling (Fuzzy Inference Systems),

we can take a subjective or an objective approach. We have tested the objective approach

that uses a clustering algorithm and fuzzy system identi�cation to determine the fuzzy

rules. This approach did not perform well on our data. In this situation, we determined the

intervals for the rules manually for the �rst learning set. One of the applications of ANFIS

is presented as a modality to interpret past data and predict behavior. In our approach, we

test a Fuzzy Control (FC). For the FC technology we use rule inference where we make the

di�erence between di�erent disease stages. We adapted this approach, but as the neural

networks separately did not perform well, we use adaptive interpolation functions.

As shown in �gure 5.3, the features extracted require a pre-processing level - a nor-

malization process for the data set - preparing them for the inference model. We can

choose between the Mamdani and the Takagi-Surgeno-Kang (TSK) inference method
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[Roussinov 2001]. In Mamdani systems, each rule has a fuzzy set attached, whereas in

TSK, each rule has a linear function on the input set of points. While the �rst model gener-

ates as result sets of points, the second one provides one or more real functions. The fuzzy

sets resulting from the �rst method need an additional defuzzy�cation step [Gabrys 2005].

Choosing the inference model is not a problem as we need functions as output and we can

eliminate an additional step. The TSK model is the one we are implementing.

Before de�ning the rules, a classi�cation of the input data is necessary following the

output data structure. We de�ne the classes that are represented by the feature points and

using the TSK inference method we de�ne a rule-based system for diagnosis. This system is

able to provide, based on the features extracted, the corresponding PD values. The problem

with this system is that it can only detect what it has learned, so if we do not have early

cases of PD it will not be able to diagnose that level. This is where the prognosis functions

come into place, as they evaluate the patients using variation functions and following their

progression we can extrapolate for new cases and place them on the PD scale.

Figure 5.3: Fuzzy Expert System Flowchart

Once the fuzzy inference system is de�ned, we can apply di�erent learning techniques

to link the neural network to the de�ned system - neuro-fuzzy modeling. There are several

architectures and learning procedures for adaptive networks. The most popular ones are the

back-propagation neural network (BPNN) and the radial basis function network (RBFN) .

The BPNN has the property of learning by propagating the information from the network

output to its input. This determines an error rate that permits an adaptive approach

on the learning process. The learning rules can be adapted to the data and use di�erent

computation methods (e.g. LSE - least squares estimation or a combination of gradients and

LSE). The RBFN method uses Gaussian functions to compute the radial basis functions.

This adaptive system represents a hybrid learning method.

In our approach, we follow the ANFIS layers, from the input data to the results, adapting

the system to our needs. The ground truth is represented by the Hoehn & Yahr (H&Y)

value provided by the medical experts. Our system extracts the features and by estimating

them has to be able to provide a diagnosis on the same scale. For the database provided by

Singapore General Hospital the H&Y values for each patient is known. This represents the

ground truth for our evaluation. It is placed on a scale from 1 to 5, but for certain cases,

when the neurologists were not absolutely sure of the disease severity, there are ".5" values

(e.g. 1.5 when the disease does not have certain cognitive aspects that most of the patients

that possess the ones that are placed at level 2 on the scale).

5.1.1 Hoehn & Yahr correlated scale

PD severity is most commonly described on a clinical basis using either the Hoehn and

Yahr (H&Y) staging system, or the Uni�ed Parkinson's Disease Rating Scale (UPDRS).

One of the standard staging systems used worldwide is the H&Y scale, provided by our

neurologists as a basis or a ground truth.
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Value H&Y standard scale
H&Y modi�ed scale

(currently employed by SGH)

1

Unilateral involvement

only usually with minimal

or no functional disability

Unilateral involvement only

1.5 Unilateral and axial involvement

2
Bilateral or midline involvement

without impairment of balance

Bilateral involvement

without impairment of balance

2.5
Mild bilateral disease

with recovery on pull test

3

Bilateral disease: mild to

moderate disability with

impaired postural re�exes;

physically independent

Mild to moderate bilateral

disease; some postural instability;

physically independent

4

Severely disabling disease;

still able to walk or

stand unassisted

Severe disability; still able

to walk or stand unassisted

5
Con�nement to bed or

wheelchair unless aided

Wheelchair bound or

bedridden unless aided

Table 5.1: H&Y scale di�erences

Table 5.1 shows the original Hoehn and Yahr scale, that includes stages 1 through 5,

but due to ambiguity at level 2, there are two other stages included on the scale: the

1.5 and 2.5. Stage 1 and Stage 5 are rarely diagnosed and this is the reason why for our

database we do not provide subjects for these stages of the disease. Stage 1 on the scale

represents the mild PD cases, the early stage of the disease. The detection for this stage

is not possible yet using the cognitive tests. For stage 4 and 5 the patients su�er from

movement disorders so the images, even if they are taken, do not o�er valid information.

This is the reason why most of the diagnosed patients are those in stage 2 and 3. We are

using the original scale for our system for starters, as di�erences between stages 1, 1.5 and

2 have not su�cient discrepancy. Our entire system makes the distinction for the features

on each hemisphere and as the di�erences between the old scale and the new one are based

on analyzing the di�erences among the two hemisphere, we are provided with the material

for such an analysis.

5.1.2 Feature analysis premises

In numerical analysis, the interpolation methods are associated to a method of creating

new data points within the range of a discrete set of known data points. The features

representing the points will be incorporated by the function variation. Parsing the data

points by curve �tting or regression could constitute approaches applicable four our data.

There are several parsing methods, but only several interpolation techniques o�er the vari-

ation required by the required dispersion. A linear interpolation or a piecewise one would

not be able to parse the data, as the features represented are dispersed. We implement a

combination of spline and polynomial interpolation techniques.

De�ning the input data and determining a function to normalize these data represent

the �rst stage for an ANFIS system. We perform these steps by determining the features

correlated with the diagnosis and then by clustering them.
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5.1.2.1 Feature Clustering

Figure 5.4: Diagnosis

based on features -our

CAD system

During the clustering process, we analyze the features extracted

and their correlation with the stages that represent clusters.

The Statistical Parameter System (SPSS) is used for estima-

tion and pre-evaluation as presented in table 4.2. Preparing

the data for the clustering includes normalization of data and

new de�nition of features for a global overview. For a char-

acterization of a case using all the features, we introduce new

metrics based on the �bers and the hemisphere attendance. In

this manner, we evaluate a case globally and at the local level,

including the speci�city as well. The features extracted and

evaluated with the FD and FV measures are completed by the

FD3D measure from equation 5.1.

FD3D =
NrF ∗ V
V olBrain

(5.1)

We de�ne the �ber density on 3D for each side of the brain

considering the number of �bers detected on the hemisphere

that we are analyzing NrF ; the voxel size V and the brain

volume of the patient V olBrain.

Once we have the features de�ned, computed and then nor-

malized, the learning stage for the clustering includes intervals

of variation for each feature. These intervals are de�ned using

fuzzy classes. We thus have in this case the �ve severity stages

and for the control cases class 0 value. As we have patients

for training only for PD stages 2 and 3, the other levels of PD

are de�ned using the variation functions from the prognosis def-

inition. After the interval de�nition, the rules supporting the

intervals on each feature are implemented, including the medi-

cal knowledge.

In adaptive systems used for this purpose, the learning rules

are more complex using together with a basic learning rule, a

batch - o�-line learning - and a pattern - on-line learning - rules.

For the classi�cation methods,the problem of supervised and

unsupervised approach is an important aspect. This aspect

places the features either into prede�ned classes, or into un-

known ones - the number of classes being unknown. As we want

to place the diagnosis onto the same scale used by the medical

doctors, we already know the number of classes for our diagno-

sis so the supervised approach is more appropriate. Among the

methods used in the supervised classi�cation, statistical classi�cation is our choice due to

the fuzziness of our data and the overlap of the clusters. As table 5.2 illustrates we take the

normalized data and make intervals depending on the H&Y values. We use these intervals

for training purpose in the rule-based diagnosis. Each interval determines a fuzzy set that

has a rule attached for de�ning the link between the values and the H&Y level.
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Variable Stage on H&Y scale

0 2 3

FD 0.0351 - 0.0353 0.0328 - 0.035 0.081 - 0.096

0.0413 - 0.0417 0.0353 - 0.0413 0.122 - 0.163

0.0413 - 0.0417 0.0417 - 0.048 0.272 - 0.279

0.068 - 0.081 0.050 - 0.068 0.302 - 0.318

0.96 - 0.106 0.163 - 0.180 0.575 - 0.607

0.180 - 0.187 0.187 - 0.272

0.279 - 0.302 0.318 - 0.372

0.372 - 0.575 0.607 - 0.855

FD3DL 0.00270 - 0.00272 0.0025 - 0.0027 0.0062 - 0.0068

0.00318 - 0.00371 0.00272 - 0.00318 0.0072 - 0.007

0.0052 - 0.0062 0.00371 - 0.0052 0.0094 - 0.0130

0.0068 - 0.0072 0.0081 - 0.00941 0.0210 - 0.0216

0.0076 - 0.0081 0.0130 - 0.0138 0.0233 - 0.0245

0.0138 - 0.0144 0.0144 - 0.0210 0.0353 - 0.0445

0.0215 - 0.0233 0.0245 - 0.0249

0.0249 - 0.0353 0.0445 - 0.047

R1vol 7808 - 8064 8064 - 8192 9056 - 9120

8192 - 8448 8448 - 8832 9664 - 10240

8832 - 9056 9120 - 9184 10496 - 10752

9184 - 9664 10240 - 10496 10976 - 11040

10944 - 10976 10752 - 10944 15808 - 17312

11040 - 11584 11584 - 12192

12192 - 13024 13024 - 13728

13728 - 14112 14112 - 15808

17312 - 25888 25888 - 50000

V olavg 8432 - 8688 8348 - 8432 8244 - 8368

9040 - 9056 8688 - 9050 9120 - 9344

9344 - 9504 9056 - 9120 10048 - 10352

9536 - 10048 9504 - 9536 11456 - 11536

10560 - 10592 10352 - 10560 16800 - 17536

11360 - 11456 11248 - 11360

11872 - 11920 11536 - 11872

12176 - 12640 11920 - 12176

13248 - 14448 12640 - 13248

17536 - 26816 14448 - 16800

26816 - 50000

Table 5.2: Data Intervals corresponding to the H&Y stages of Parkinson's Disease.[Pataca 2010]
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5.2 Relationship between features and H&Y scale

Applying predicates on IF-THEN rules is challenging from the point of view of electing the

rules, but at the same time, at this level we can include medical knowledge for the decision

process- diagnosis must be based on medical knowledge. There are though two steps in a

rule-based system:

• Clustering the features

• De�ne the input-output relationships

For the �rst step, using subtractive clustering can merge automatic clustering with fuzzy

inference systems. The potential for each data point can be determined by computing the

distance between the new points with regard to the others. The greatest potential value

provides the cluster center. The systems characteristic behavior can be estimated by a

fuzzy rule after each cluster.

The approach has the advantage of using a priori knowledge and integrating complemen-

tary information by the extracted features. It is also used in expert systems as it permits

interpretation of the features. The fuzzy sets at this level are better used in labeling, al-

though it can include uncertainty and object recognition in a procedural form. Using neural

networks even if it is less restrictive than linear discriminant analysis (LDA), it does not

perform very well for our data, as it is not so exact and not sensitive enough to small

di�erences on the input data (Fig.5.4).

In an ANFIS architecture, the next step is represented by the rule strengths de�nition.

We de�ne a set of rules based on the detected clusters and include the medical knowledge

as well. We decide to use the rule-based approach, as the medical knowledge can be included,

di�erent features can be considered at di�erent stages of analysis and we can re�ne it. As

presented in the tractography study at the evaluation stage, there is a clear correlation

between the �ber parameters on the left hemisphere of the brain and the disease severity.

There are cases that do not register any �bers detected due to the image quality or to the

tracking method, but in those cases we consider the midbrain detected volume and/or the

right side detected �bers, if there are �bers detected on this side. These features are used

when a case can be placed in more than one class - for tangent clusters.

The de�nition of the rules for diagnosis includes not only medical knowledge, but over-

comes inter-patient variability. It considers the hemisphere studied in the density of the

�bers, the volume of interest where the dopamine �ow starts and the 3D density of the �bers.

As presented in equation 5.2, after de�ning the clusters using the �ber density- HYFD- and

based on the midbrain volume- HYV OIV ol
- we evaluate the threshold and place a new case

depending on these features. When con�icts appear and a decision between clusters is not

obvious, an additional feature is used for diagnosis. If we do not have a positive positioning

of the case on the feature axis, than the VOI is not correctly determined due to image

quality or insu�cient slices for the volume. These con�icts generate the set of rules that

we use for the expert system that determines a classi�cation of the cases, depending on the

disease severity. The �ber density (FD) values are classi�ed on the H&Y scale in the �rst

row of the table 5.2. These classi�ed FD values from the table are used next for de�ning

the rules in equation 5.2. These rules determine the H&Y value based on the intervals in

table 5.2 and considering the correlation between the features in the table and the severity

scale.

When the left side �ber density does not provide a reliable value for diagnosis, the right side

bundle of �bers is taken into account and if the �bers are not detectable, the volumes of

interest are taken as measures for diagnosis. Testing the rules from equation 5.2 we obtain



80 Chapter 5. Diagnosis and Prognosis

Figure 5.5: Classi�cation with FiberDensity values on the left side [Pataca 2010]

the variation function for the FD according to the severity of PD represented in �gure 5.5.

If(HYFD = HYV OIV ol
∧HYFD ̸= −1) then HY = HYFD

If(HYFD = −1 ∧HYV OIV ol
̸= −1) then HY = HYV OIV ol

If(HYFD ̸= −1 ∧HYV OIV ol
= −1) then HY = HYFD

If(HYFD ̸= −1 ∧HYV OIV ol
̸= −1) ∧ (HYFD ̸= HYV OIV ol

)) then

If(FD3D ̸= 0) then HY = 2

else HY = 0

If(HYFD = −1 ∧HYV OIV ol
= −1)then The image is invalid!

(5.2)

Using this set of rules only the di�erence between the control and the PD cases is possible.

On the PD scale, only cases rated stage 2 and 3 can be classi�ed. For new cases, as well as

for deviation study on the features, we take the clusters and determine their di�erences.

In our �rst approach, when considering neural networks for clustering, the features

do not o�er a clear boundary among classes de�ning the disease severity stages. The

diagnosis obtained in this manner is not reliable, due to the dispersedly placed cases and the

overlapping nature of the intervals appertaining to distinctive classes of PD severity. We

have tested a simple KMeans approach, knowing the number of classes we need. The results

were not nearly as good as those obtained with the rule-based system and fuzzy approach.

5.3 Prognosis method

From diagnosis to prognosis, there is apparently only one step. While the diagnosis based

on the rules is matching the patients to the classes that it was trained to recognize, the

prognosis can place patients on severity degree levels that are not learned by the system.
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The diagnosis performs estimation for the patient by placing the feature in one of the

classes corresponding to a PD stage or in the control class. The prognosis o�ers the value

of the correlation between the disease and the a�ected features.

Prognosis systems learn from the formerly acquired data and by analyzing and studying

it, a pattern is revealed and used for new cases. Prediction systems using arti�cial intelli-

gence can be based on neural networks, on fuzzy logic, on genetic algorithms or on expert

systems. As previously presented, the interference among di�erent PD levels at the feature

level does not provide a clear boundary for classi�cation using neural networks. From the

neural networks methods for prognosis, we tested the KMeans and KNN approaches but

they did not provide satisfactory results on our data. The overlapping of di�erent feature

groups at the class level represents a fuzzy dispersion on the features spaces, but the fuzzy

systems need additional knowledge as well. In this context, we consider the results from

the rule-based diagnosis system and we continue using the ANFIS architectural method.

At this stage, the learning and classes are already de�ned and we intend to �nd a func-

tion by using interpolation among the existing points, representing the PD pathology on

the scale severity. By extrapolation, it could provide the ability to determine the evolution

tendency for the features and to determine the early cases of the disease. The ANFIS ar-

chitecture at this point possesses the functions for determining the consequence parameters

that provide the �nal decisional value. In our case, we de�ne the interpolation functions for

this purpose. The intervals with their limitations can be considered as weights in de�ning

the interpolation functions for the ANFIS approach. Like the RBFN model, in this case the

weights represent the medical constraints, encapsulated in the intervals, and the variation

functions are referred in our case by the interpolation functions. The function determined

in this manner should be used for extrapolation onto disease areas that are not detectable

at this moment. The function describes the disease variation based on features and for any

new patient, a correct placing of the case on the PD scale.

For de�ning the interpolation method, there are several steps that must to be taken:

• New data points within the existing range of acquired data

• Meshing the points

• Using the mesh determines the function that approximates the real data variation

The interpolation methods are based on the shape of the mesh function, which can be:

linear, polynomial or spline. Analyzing our data set, a linear approach is not possible due

to the dispersed points on the plot. A polynomial approach is challenging at the parameter

level and for the �nal complexity, but we consider it. The liberty in the parameter choice

and the adaptability provided in this case represent arguments requested by our data. The

cubic spline interpolation method has weights attached to each �at surface to guide the

bending of the variation function, but the challenge at this point is to �nd the correct

variations among the weights. This approach requests additional algorithms for weight

estimation.

With regard to the polynomial approach, the Lagrange function can determine the

parameters and can be easily adapted on any number of features. This represents a desirable

choice because for each new input, the basis polynomials can be recalculated and we improve

our prediction with each step of the way. The weights o�er a good perspective in improving

the polynomial functions and de�ne the spline as Lagrange functions.
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Figure 5.6: The prognosis function variation based on the Fuzzy Adaptive Evaluation (FAE)

method

5.3.1 Function de�nition

A combination of functions is used for estimation purposes. We aim at placing any new

case at the correct level of the disease severity on the patho-clinical space. This space is

de�ned by the �ber measures encapsulating the pathophysiology and the clinical diagnosis,

represented by the H&Y scale. The feature points used for de�ning the functions in the

patho-clinical space are the manually segmented Putamen patients. We have chosen these

patients as they represent the ideal segmentation and we need accuracy for the function

de�nition. Each patient represents a point on the patho-clinical space with the placement

given by the couple (FD, H&Y).

The Lagrange polynomials provide us with the coe�cients for the spline functions used

for interpolation. These methods are quick and easy to implement, but not very precise. We

gain precision by dividing the data set. If we use all the 41 points for de�ning a Lagrange

function, we obtain a 40-degree function. We require the function to pass trough all those

feature points.

For a de�nition of a polynomial using the Lagrange approach, we need the coe�cients

determined by using equation 5.3. For this function, the points (xi,yj) represent the features

extracted in table 5.2 at the image level.

L(x) =
n∑

i=0

yi ∗
n∏

j=0,j ̸=i

x− xj

xi − xj
(5.3)

The 40 degree polynomial that obtains the coe�cients using equation 5.3 is hard to handle.

When introducing new cases, the function becomes very complicated and it takes a lot of
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time for evaluation. The accuracy is a�ected as well. By dividing the feature points from

the patho-clinical space into sets de�ned by a function for each set, we gain accuracy. A

two point set de�nition determines a linear function and we already know that the variation

is nonlinear; therefore, we start from three set points. A �ve-degree polynomial function

becomes too complicated so the highest degree of polynomial representation on an interval

is a four-degree polynomial function.

C2 = y1

(x1−x2)(x1−x3)
+ y2

(x2−x1)(x2−x3)
+ y3

(x3−x1)(x3−x2)

C1 = −(y1
x2+x3

(x1−x2)(x1−x3)
+ y2

x1+x3

(x2−x1)(x2−x3)
+ y3

x1+x2

(x3−x1)(x3−x2)
)

C0 = y1
x2x3

(x1−x2)(x1−x3)
+ y2

x1x3

(x2−x1)(x2−x3)
+ y3

x1x2

(x3−x1)(x3−x2)

(5.4)

The prediction function is dependent on the PD stage determining di�erences for each set of

points. Sub-functions de�ned for each subset of values corresponding to the severity degree

represent solutions. As presented in equation 5.4 we de�ne the parameters for the second

degree polynomial function for each set of points.

The polynomial function that uses the parameters de�ned in equation 5.4 is the second

degree Lagrange. Due to the fact that the scale is limited on the upper values at level �ve,

and on the lower boundary at level zero, we apply the same limitations to our functions.

For the forth degree polynomial representation we determine the coe�cients as presented

in equation 5.5 but for this case, on the last interval, we have points that are far apart for

each other. The testing on the whole database will reveal if we need the tree-points sets or

�ve-points sets.

C4 =
4∑

i=0

yi
4∏

j=0,j ̸=i

1
xi−xj

C3 =
4∑

i=0

yi(

4∑
j=0,j ̸=i

−xj

4∏
k=0,k ̸=i

(xi−xk)

)

C2 =
4∑

i=0

yi(

4∑
j=0,j ̸=i

xixj

4∏
k=0,k ̸=i

(xi−xk)

)

C1 =
4∑

i=0

yi(−

4∑
j=0,j ̸=i

xi(
4∑

m=0,m ̸=j

xm∗
4∑

n=m+1

xn)

4∏
k=0,k ̸=i

(xi−xk)

)

C0 =
4∑

i=0

yi(

4∏
j=0,j ̸=i

xj

4∏
k=1,k ̸=i

(xi−xk)

)

(5.5)

There are intervals where a certain polynomial function works better than another one -

constraints determined by the intervals that represent the weights. This is the case with

the last points on the forth degree polynomial approach, as the second degree polynomial

performs better in this case. This is the reason why we need to consider not only the

interval where the new points are placed when extrapolating the polynomial functions, but

also the surrounding intervals and their own functions.

In the four-degree interpolation function, for the last interval, there are not enough

points for the interpolation. For this function, a simple linear function follows much better

the interpolation points.

5.3.2 Our analysis approach

When we provide a new case for analysis, we use the �ber features for placing it on an

interval, determining the next closest values on left and right sides of the new point. De�n-
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ing the interval where the new value needs to be placed, we determine the H&Y values

corresponding to the interval and the mean value of the same interval. The three H&Y

values provide the data for the rule-based diagnosis system. This system provides the �nal

value for the new case.

Figure 5.7: Independent Adaptive Polynomial Evaluation (IAPE)

When a new point is to be evaluated and its H&Y value determined, we have several

steps to perform. We perform this estimation using the "ideal" set of points. The position

of the new point (X) among the others is determined by �nding the neighbor points, the

one placed higher (XM ) and lower (Xm) on the feature axis- �gure 5.7. For determining

the H&Y value for the new feature X, we estimate it using the surrounding points. We

start by determining the polynomial function using the next four points smaller than X:

LF1, those higher than it: LF2 and those that are centered in X: LF3. If at least two of

these three functions have as result the same H&Y value for X, then we save this value

as HY1. Otherwise we determine the functions using just the three points - second-degree

polynomial functions. We can only be stopped by the linear functions that ultimately

will produce the value for HY1. A second value, HY2, represents the H&Y value for X

determined using the linear function that passes through the points associated with the

XM and Xm values. The �nal value is given by HY1 if the di�erence between this value

and HY2 is not higher than three levels on the scale, otherwise the mean value between the

two HY is the �nal estimated value for the disease severity. This algorithm describes an

Independent Adaptive Polynomial Evaluation (IAPE) method as it is applied both on PD

and controls determining a polynomial adapted to the feature data provided. The method is

a hybrid ANFIS approach as it uses as back-propagation the di�erence between polynomials

at each stage but it is also similar to the RBF by using the Lagrange polynomials.

An extension of this approach, adapted for PD cases, is called PD Adaptive polynomial

evaluation method (PD-APE). The estimation function is used basically for the PD patients,

adding the condition that if HY1 or HY2 generate as result the 0 value, the other value is to

be taken as a result. This condition does not a�ect the results of the overall performance.

The variation function incorporating this condition performs the best accuracy. From the

ANFIS point of view, this method takes into the second layer the �ring strength given by

the PD correlation.

Determining the control and the PD cases �rst and then applying the function that

provides the best interpolation for the set of points, represents a fuzzy adaptive method for

prognosis. This variation function uses for the control cases the second-degree polynomial

method and for the patient cases the PD adaptive polynomial evaluation method.
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Figure 5.8: Data �ow on Independent Adaptive Polynomial Evaluation (IAPE)

Figure 5.9: Placing of a new patient using the IAPE approach

5.4 Conclusion

Diagnosis based on a rule-based system is able to rate the patients but as it does not provide

a variation function, we are not able to track new data or extrapolate for early diagnosis.
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The Prognosis approach based on polynomial functions provides a much more accurate

diagnosis and is able to provide an extrapolation for the new cases, as well as for new

levels of disease. The polynomial degree of the function determines the data re�nement

and the function sensitivity. Our own analysis approach determines an adapted system for

the envisioned task.

For the prognosis method, our approach proposes an ANFIS architecture based on a

fuzzy inference system with a rule-based de�nition and several hybrid approaches at the

network level. We de�ne the required polynomials for each set of input data and we adapt

it to the constraints imposed by the medical knowledge when delivering a prognosis value.
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A
complete procedure of a research study integrates several evaluation stages. These

stages determine the study orientation by con�rming or invalidating the theoretical

hypothesis. Each stage is important for the overall result. Both statistical and technical

aspects are tested. The statistical studies validate the theoretical approaches, whereas the

technical ones, determine the research results and the method performances. There are also

statistical evaluations applied to determine the impartiality of the technical methods or the

one used for testing. By analyzing these tests, we are able to follow and determine if the

methods applied are a�ecting the quality and/or quantity of the information. An important

aspect for determining the evaluation methods is their impartiality to other features than

the PD a�ected ones. The overall conclusion can be a�ected by incompatible tests.

As presented in �gure 6.1 there are several stages where evaluation has to answer several

questions. In our research, the feasibility evaluation at the pre-processing level needs to

determine if the information at the DTI level is valuable. The DTI information relevance

determines a follow-up on its traceability at the image level. The assessment includes

analysis and evaluation of the correspondence between the image information and the PD

severity. As presented in the schema, the results of these tests a�ect the next level of

evaluation. The general analysis and the localized one from the feasibility, determine the

degree relevancy of the PD information. A comparative analysis between the two aspects

a�ects the segmentation.

The anatomical structures required for the processing level are the result of the feasibility

study and are obtained using the pre-processing elements. The extraction process could

a�ect the data and this is the reason for determining their relevancy by comparing the

correlation level after this process with the one obtained during the feasibility study. The

level of focalization refers to the question whether extracting the midbrain is enough or we

need to determine the SN. This question is answered only after the processing level, when

the relevancy of the �bers extracted denote the �nesse of the tractography. As the midbrain

is o�ering much more �bers than just the neuromotor ones, an analysis to determine whether

the extracted �bers are the required ones validates the midbrain as a reliable source, even if

it is vast. This analysis validates the approach used for the tractography, but the statistical
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analysis of the extracted �bers determines whether the initial information is lost during

extraction.

This aspect is linked to the analysis stage as well. The correlation of the �bers with

the PD severity, expressed by the numerical measures and the concordance determined

during the feasibility testing, should be at the same level or even higher. This evaluation

determines if the measures a�ect the information revealing their reliability. Their correlation

with the disease severity is exploited at the analysis stage. The questions from the analysis

stage represent the global values for our study. The answers to these questions provide the

conclusions to our research and they are given by the evaluation presented in this chapter.

Figure 6.1: The evaluation process during our study

There are evaluation stages for determining the relevance of the contributions on each

phase of the project development. These progressive tests determine if the considered ap-

proach can be further developed. This is the case for the feasibility study, performing an

analysis of the green channel from the FA image on a segmented volume of the midbrain.

This study, presented in [Teodorescu 2009a], determines if there are �bers correlated with

the PD severity on the AP di�usion direction. The tests are performed on test-batches that

determine the immunity of the testing method. This aspect of the evaluation detects the

appropriate study that targets just the correlation. The same test is used for each level

of information afterwards. For the medical relevance, we use the T-Test for detecting the

correlation between the obtained values and the cognitive evaluation (ground truth).

The results of this study determine the choice of the Putamen for segmentation, as it is

placed in the direction of di�usion, indicated by the �bers staring from the midbrain area.

The choice is determined by the conclusion of the test the similar studies indicating that

its physiology is a�ected by the PD pathology.

After the feasibility study de�ning the path and the context of our prototype, we evaluate

the entire study. As each module of the prototype contains contributions and has original

ideas, their estimated values de�ne the local performances. For the global view, we consider

the intermediate results and the technical aspects a�ecting the overall study.

The overall estimation for the medical imaging as biomarker should o�er not only rel-

evance to the disease, but also performance characteristics and generalization capabilities.
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We have evaluated the DTI information relevance for the disease by determining the cor-

relation for each level of information processing. We evaluate the criteria de�ning a new

marker by testing the DTI performances obtained for the entire database. The ground

truth, represented by the values of the PD severity on the H&Y scale, is provided the Sin-

gapore General Hospital (SGH), together with the image database. For our database, the

heterogeneity of the patients provides generalization evaluation capabilities.

Another aspect of the overall evaluation is represented by the platform introduced as pro-

totype (Fig. 6.2) from the technical point of view. This evaluation uses other approaches and

is comparing our results with the ones obtained with other methods (software/algorithms)

using our images. The goal is to determine the algorithm accuracy. The overall per-

formances are a�ected by these techniques and their ability to accurately and correctly

extract and analyze the medical image and its derived information. The automatization of

the entire process determines original solutions that could a�ect the data.

Figure 6.2: The main stages for data management for DTI image using our prototype,

PDFibAtl@as

Another validation and evaluation is performed at the processing level, for the segmen-

tation methods, in order to determine their accuracy and to ensure that this process does

not a�ect the quality of the information extracted. The neurologist evaluates the automatic

detection method of the midbrain. We validate the volumes obtained by running the results

under the supervision of our partner neurologist, to verify the placement of the detected
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elements on the initial images. The detected Putamen is evaluated at the image processing

level, by comparison with the volume detected by using the manual segmentation of this

anatomical area. By performing a logical AND between the two mask images representing

the segmentation we determine the di�erence representing inaccuracy or inadvertence. The

resulted image represents the non-overlapping areas. These areas represent the error rate

of the automatic segmentation.

Another technical aspect is represented by the fusion. This process is performed using a

geometrical registration. The automatic Putamen detected on the FA stack is registered

afterwards on the EPI stack. The registration method is fully automatic. This method was

visually validated as well, in collaboration with the radiologists.

At the tractography level, the two aspects that need validation are: the correct identi-

�cation of the neuromotor tract and the relevance of the measures for the detected tract.

For the �bers, we can only verify that the detected ones are approximately on the SN area.

The correlation of the tracked �bers with the determined PD severity, validated this time

not only the fact that the neuromotor �bers are a�ected by the pathology of the disease,

but also that the determined �bers from the image level can be used for determining the

condition of the patient. Furthermore, our new metrics that encapsulate the detected �bers

are correlated with the severity of the disease as well, indicating the e�ciency of these

metrics.

The analysis stage is evaluated indicating its accuracy by taking as ground truth the H&Y

values of the patients.

Before evaluating our research, we de�ne the metrics used for estimating the perfor-

mance of each method, the signi�cance of the measures and their relevance. The testing is

performed on the entire database, to determine the adaptability and the indi�erence to the

demographic parameters.

The whole database contains 66 patients and 66 control cases that managed successfully

to generate the segmented areas. We dispose of 68 patients and 70 control cases, but due to

the image stacks unable to provide the entire volume between the midbrain and the Putamen,

2 patients and 4 controls were eliminated from the test. We use this database to evaluate

the �nal results provided by the prototype, representing the overall process for determining

the prognosis.

6.1 Evaluating metrics for the overall performance

The performance level of the CAD systems is given by the sensitivity of the detection,

together with the speci�city and the accuracy. The information extracted from the medical

images is evaluated at this level, after the application of all the extraction and analysis

methods. When detecting abnormalities in an image, the true and false refer to the decision

of the algorithm, compared with the clinician decision.

• TP true positive - the algorithm detects correctly the abnormality

• FP false positive - an abnormality is detected while it is not in the image

• TN true negative - no abnormality exists and the algorithm does not detect one either

• FN false negative - the algorithm does not detect an abnormality when it is there

These terms have di�erent meaning, depending on the evaluated method. Using these terms,

we de�ne the metrics that determine the performances: the sensitivity in equation 6.1, the
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speci�city in equation 6.2 and the accuracy in equation 6.3.

Sensitivity =
TP

TP + FN
(6.1)

The sensitivity represents the abnormality rate detected on a set of problematic patients and

it is a percentage of success of the algorithm. On the other hand, the speci�city represents

the normally detected cases, being a percentage measure as well.

Specificity =
TN

TN + FP
(6.2)

The sensitivity re�ects the positive cases identi�ed correctly and the speci�city represents
the negative cases identi�ed as such. For a complete analysis of the performances, the
accuracy of the system is computed as well. This metric characterizes the overall system.
Usually, there is a tradeo� between sensitivity and speci�city. The accuracy re�ects this
tradeo� as it includes both TP and FN.

Accuracy =
TP + TN

TP + FP + TN + FN
(6.3)

The graphical representation re�ecting the balance between the sensitivity and the speci-

�city is the ROC curve. This statistical parameter de�ning and estimating the methods

proposed is a Receiver Operating Characteristic (ROC) curve representing the two measures:

sensitivity versus speci�city. This curve applies to our �nal methods, at the diagnosis and

prognosis level of our approach. It estimates the accuracy of the method and ideally has

the shape presented in �gure 6.3, where the distributions do not overlap. On the diago-

nal, all the distributions overlap. The Area Under the Curve (AUC) represents an overall

measure of the test performance and allows comparison between di�erent methods. This

area is interpreted as a distance between the disease and control test results. The AUC is

a subunit measure and its maximal value is 1. This represents the ideal value for a test.

Figure 6.3: Receiver Operating Characteristic (ROC) curve

Using the de�ned statistical metrics, we test the performances of the prototype for each

processing level, the overall performance representing our study's achievement.

6.2 Performances for di�erent stages of the system

We present the results obtained at di�erent evolutionary stages of our approach. The pro-

cessing level performances are determined at the segmentation level and after performing the

tractography. To evaluate the �bers, we consider the �bers association to the strationigral
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tract. Together with the cases that did not provide any valid �bers after the tractography,

these cases represent the errors for the �rst stage. Results on di�erent methods validate the

approach. For the analysis level, determining the performances for the diagnosis and the

prognosis de�ne the global performances of the system. All the evaluations are performed

using the entire database with our own methods.

The way that the database is used a�ects the results obtained. As presented in

[Sonka 2009] various computerized methods, the use of di�erent database a�ects the re-

sults. We have ensured the indi�erence towards the demographic parameters as presented

earlier. Nevertheless the quality of the images, better in some cases and more accurate for

other patients, in�uences the results. The subtle cases provide a lower performance level.

The database characteristics in�uence the training and the objective measures.

For the second feature analysis stage, we evaluate the variance of the disease severity:

classifying a patient with PD among the controls or classifying a control case among the

PD patients. The variance of the disease determines another error rate among the PD

patients - considering a patient more or less a�ected by the disease than it really is the case.

The input and output data are important when evaluating the independent modules of our

prototype. Their nature is di�erent, following the transitional stages de�ned for the DTI

image information migration advancing from the image to the knowledge level.

For the image processing level of the prototype, we have as input data the images and

we test the automatic detection against the manual one. The tractography uses images as

input as well, but it determines the values for the new introduced parameters: FD, FD3D,

FDrel, FV . At the feature level, we have as input data, the extracted values for the neural

�bers on the left and the right side, expressed using the new metrics and the detected

volumes on both sides. The diagnosis and prognosis module provide, as output, the disease

severity on the H&Y scale.

6.2.1 Segmentation evaluation

The importance of the segmentation is revealed by the Putamen detection methods. The

di�erent methods changed the diagnosis sensitivity with 19% . The correct detection of

this volume of interest, determines an accurate selection of the �bers and this aspect is

translated at the diagnosis level.

In order to estimate the performance of the Putamen detection, we use the manually

detected areas as the ground truth, against the automatically detected ones. The manually

detected areas are detected on 42 subjects: 22 patients and 20 control cases.

When computing the sensitivity and speci�city for the image processing level, we obtain

values of 0.63%, respectively 0.87%. The same evaluation is momentarily impossible for

the diagnosis, as we need con�rmation for the FP and FN cases.

In our evaluation, we consider several parameters like the technical e�cacy, the diag-

nostic accuracy and the error rates.

The di�erence between the number of �bers detected with the manually segmented

Putamen and with the automatic one, for the same patients, determines the error rate for

the automatic detection. This error rate is measured by the relative error value presented

in equation 6.4.

Errrel =
x−X

X
∗ 100[%] (6.4)

where x represents the measured value and X is the average value of all the measurements -

in our case, the di�erence between the manually detected Putamen area and the automatic

one.
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Test type Left(Errrel [%]) Right(Errrel[%])

Unaligned volumes 34.66 35.75

Volumes aligned 37.26 39.6

Table 6.1: Relative error rate for Putamen

Regarding the methods used for the segmentation of the Putamen, we are testing an

inter-slice alignment of the detected masked slice images. This alignment is based on the

center of mass of the detected region. As table 6.1 presents, the aligned volumes do not

perform better than the method that is choosing the seed as the center of mass of the

detected region in 2D. As for the error rate, it is computed using the area of the manually

detected Putamen and the one of the automatically detected one, on the tractography pro-

cess. For the method using exclusively the triangular shape for the Putamen segmentation

we detect an error rate of 34.66% for the left side and 35.75% for the right side of the brain.

Evaluating the alignment algorithm based on the center of mass o�ers a the relative error

rate of 37.16% on the left side and 39.6% on the right side.

The reason for the in�uence of the Putamen on the tractography results is that the

�bers crossing trough the detected Putamen are usually placed on the posterior part of this

anatomical area most of the time left outside by poor detection methods. A good detection

places the Putamen mask accurately on this area, detecting all the neuromotor �bers.

The results show a smaller error rate for the left Putamen area, which has more clear

boundaries than the right Putamen area. This correct detection is desired from our perspec-

tive as it is consistent with the medical approach which has determined that PD patients are

usually more a�ected on the left side of the brain by this disease.

As the correct placement of the Putamen determines the validation for the strationigral

�bers, its placement, together with the correct detection of the volume, determines the

number of �bers and directly a�ects the analysis results.

6.2.2 Tractography e�ectiveness

For �ber evaluation, the number of �bers identi�ed for each patient, represents the measure

of a correct or an incorrect segmentation. The tracking algorithm is sensitive to the Putamen

detection and to the EPI image quality. Values for the �bers higher than 20 represent a

misplacement of the Putamen area or an incorrect detection, as we have concluded. The

reason for this conclusion is represented by the fact that when the Putamen is incorrectly

detected, the tractography algorithm validates more than just the strationigral tract. Based

on these elements, we de�ne the parameters for the sensitivity, speci�city and accuracy

evaluation.

• TP - PD patients that have a correct segmentation compared to the manual approach

that have less than 20 �bers

• FP - PD patients with a correct segmentation and more than 20 �bers

• TN - Patients that do not have correct identi�cation of the volumes of interest

• FN - Patients with volumes detected that provide no �bers after tracking

With these categories of patients, we obtain 89% speci�city, 80% sensitivity and 82% accu-

racy on the PD patients for the left side. Detection for the Putamen for this test represents

the combined triangular and quadrilateral approach algorithm. The same approach on the
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Test Speci�city [%] Sensitivity[%] Accuracy[%]

Patients 89 86 82

Control 37 82 75

Overall 63 81 78.5

Table 6.2: Tractography performances

control subjects provides values of 37% speci�city, 82% sensitivity and 75% accuracy. De-

termining the overall performance of the algorithms on the data, we obtain 63% speci�city,

81% sensitivity and 78.5% accuracy (table 6.2).

Figure 6.4: Fibers determined by tractography using the automatic segmentation methods

for VOIs

The neurologist also performs the validation of the �bers, so that we can be sure of

detecting the right bundle of �bers for further study. The neuromotor �bers start from the

SN area in midbrain and are validated only if they reach the Putamen. The thresholds

for tractography are 0.1 for the FA value and 0.6 for the �ber angulations. The number

of �bers represents the output of this module. Together with the values of the segmented

volumes of interest, the �bers provide the measures used as input by the diagnosis and

prognosis module.

6.2.3 Diagnosis performance

Using the neuromotor extracted �bers from the processing level, we interpret the extracted

data by using the �ber density de�ned in equation 4.10 and the recalculated values in
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equation 5.1.

The training set is composed by the 42 patients (22 PD diagnosed patients and 20 control

cases) that have the Putamen manually detected. In this case the Putamen segmentation

does not a�ect the results from the diagnosis.

The normalized extracted data represent the input for this module. We perform pretest-

ing on 26 patients, to determine an applicable approach. The diagnosis is achieved by using

the rule based system on the intervals de�ned in table 5.2 for the extracted normalized

features. We test the system on the intervals for the left �ber density. After training the

rule-based system on the test batch, we retrieve a 61.53% success rate [Pataca 2010] with

16 cases correctly identi�ed and 10 cases not detected, where 6 from these 10 are not valid

and 4 are incorrectly placed on the scale. The cases that are incorrectly placed represent

cases where the tractography was not able to provide �bers for the left side.

Figure 6.5: Classi�cation based on the FD3DL [Pataca 2010]

As shown in �gure 6.5, the diagnosis is able to determine, based on the rules, only what

it has learned. This represents cases graded on the H&Y scale from stage 2 to stage 4, as we

do not have patients with level 5 due to their immobility. A patient at stage 1 of PD is not

detectable yet as this stage represents the mild cases and it is considered early diagnosis.

From the biomarkers standpoint, the diagnosis approach determines the relevance for

the disease of the medical image represented by the neuromotor �bers. Using the rule-based

approach, we provide a correlation with the disease for the DTI image information, based

on the �bers with 61% accuracy. At this level, the downside is that only by introducing

new rules we can estimate the early cases. Although this method is expandable and it can

integrate the clinical aspects as well, there is currently no solution for determining the early

cases in this manner. There is additional knowledge involved for this purpose and it is not

available at this point. Without it, early PD stages are not approachable in this manner.
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As these cases are not detectable, the ground truth is not currently available either.

Taking another approach by using the prognosis functions, we are able to expand our

research and o�er a possibility to reach the early cases by extrapolation.

6.2.4 Prognosis evaluation

For the prognosis approach, our study is based on the ANFIS architecture, but it studies

several possibilities for the interpolation approach. Considering the input data characteris-

tics, this architecture o�ered a reliable base. For the interpolation function development,

we train the methods using the data set obtained from the manual detected Putamen appli-

cation for �ber detection (41 subjects). We choose this set as it represents the "ideal" data,

unbiased by the Putamen detection. Our interpolation methods are compared to determine

their strong and weak points for further development.

Using the second and the forth degree polynomial determined in chapter 5, we �rst test

the prognosis module on the batch represented by 26 patients. The results on the second

degree polynomial function represent 19% for the error rate on the training set and 34%

success rate for the forth degree polynomial function. The functions are de�ned using the

�ber density normalized values on the left side of the brain [Pataca 2010].

We evaluate the Fuzzy Adaptive Evaluation prognosis function on a batch from the

training set (37 PD patients and 52 control cases that provided valid features after the �ber

extraction). We include randomly 5 PD patients from the initial training set with 42 cases

that have been processed using the entire automatic approach. With a rate of accuracy

of 32.43% on the patients and 46.15% on the control data, the overall system provides a

40.44% correct identi�cation rate.

Figure 6.6: The Sensitivity, Speci�city and Accuracy of the prognosis methods

An evaluation of the diagnosis and prognosis module is performed using the all automatic
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methods applied on the database (68 patients and 66 controls). These results are presented

in �gure 6.6. For computing the values for these parameters using the equations 6.1, 6.2,

respectively 6.3, the values for the coe�cients represent the following:

TP cases with PD correctly identi�ed

FP control cases identi�ed as PD

TN control cases correctly identi�ed

FN unidenti�ed PD cases

The patients are characterized by the value of the sensitivity with the best result determined

by using the Independent Adaptive Polynomial Evaluation (IAPE) method with a value

of 62.16%. On the control cases, the speci�city represents the de�ning value and the best

performance is obtained by using the second degree polynomial approach with 43.9%. The

accuracy represents the overall performance of the algorithms and from its perspective

the method that performs the best is the PD Adaptive Polynomial Evaluation (PD-APE)

providing a value of 44.87%.

The overall performance of the prognosis module is provided by the ROC curve. We

compute this metric using the SPSS 17.0 (Statistical Package for the Social Sciences). We

estimate separately the patients to determine the relevance for the disease in determining

the severity degree. The controls are tested for determining the sensitivity factor of the

methods. Evaluating the IAPE method using this metric, the area under the curve (AUC)

is 0.705, whereas for the PD-APE the value is 0.959 (see �gure 6.7). This indicates a much

better performance on the patients' data for the second method.

Figure 6.7: ROC curve for PD-

APE prognosis method on the pa-

tient data. The AUC value for this

case is 0.959 on the 68 PD diag-

nosed patients from the database.

We evaluate the prognosis performances on the control and patient data to estimate

the overall capacity of the DTI image information in our approach. We compare the ROC
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curves for di�erent methods, and for this purpose, we use the MedCalc1 software. This

software provides two approaches for the ROC curve estimation: De Long and Hanley &

McNiel. Using the complete database with all the subjects, the results for IAPE provided

the same AUC value for the two ROC estimations. We further use the De Long approach

when evaluating the ROC, as the error rate provided on the same test is slightly lower

compared with the McNiel approach (0.1%).

For the PD-APE method of prognosis, we obtain a value of 0.569 for AUC for the overall

test. The IAPE method for the same the dataset, the AUC value provides a value of 0.745

(see �gure 6.8). Comparing the two curves, the di�erence between the areas is 0.176 - �gure

6.9.

Figure 6.8: The ROC curve rep-

resenting the IAPE prognosis

method applied on the whole

database: 68 PD cases and 75

controls. The AUC for this test is

0.745.

Comparing the diagnosis and the prognosis approach, even if the prognosis o�ers the

possibility of determining early cases, its performances are lower. The values obtained

nevertheless represent encouraging results from the numerical and biomarker standpoints.

6.2.5 Computational speed and requirements

We use Java for all the systems with imageJ toolbox and bio-medical imaging plug-ins 2.

The image processing corresponding to the pre-processing part is done by enhancing the

contrast for the EPI images and removing the noise. For the removal of the skull, we use

K-Means method for the segmentation based on the pixel intensity. By removing the skull,

we remove the outside noise surrounding the entire brain-the aura e�ect-induced by the

scanner. For the 3D visualization, we are using the Volume Viewer from imageJ 3.

The algorithm is tested on Intel core Quad CPU Q660 (2.4GHz; 4.0G RAM) and the

average time for each patient is 4.68 min with the automatic detection and the �ber growth

algorithm. If with DTI tracker from MedINRIA, the time to perform just the tractography

on our images for one patient was 1-5 min, with our prototype, it takes us an average of

1MedCalc 11.3.3.0 - www.medcalc.be
2Bio-medical image -http://webscreen.ophth.uiowa.edu/bij/ - last accessed on May 2010
3Volume Viewer 3D - http://rsbweb.nih.gov/ij/plugins/volume-viewer.html - last accessed on March

2010

www.medcalc.be
http://webscreen.ophth.uiowa.edu/bij/
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Figure 6.9: The two ROC curves for IAPE and PD-APE methods applied on the database

(143 cases: 68 patients and 75 controls). The AUC values for IAPE and PD-APE are 0.745,

respectively 0.569. Evaluating the ROC di�erence between the two tested methods the

AUC indicates a di�erence of 0.176.

2 min. The reason of this computation e�ciency is related to the limitation of the area

for the �bers when performing a global tractography, whereas the method proposed by the

DTI tracking module (MedINRIA) takes a local approach without an ending point for the

�bers, selecting at the end the �bers passing through a speci�c volume of interest. The 2

mins represent for our system all the time needed from the pre-processing to the end of

processing level. A similar time (1.2 min) is achieved using a probabilistic global method

with the Di�usion Tracking module (TrackVis) for image selection and the tractography,

without segmentation and computation of the �ber metrics.

Our system provides a user interface for displaying the results and the obtained numeri-

cal values for segmentation and tractography. Figure 6.10 represents the features extracted

for each patient after the processing level, the volume extraction and the tractography. It

displays the 3D view of the EPI stack, with the segmented volumes of interest and the

detected neuromotor �bers highlighted.

6.3 Conclusion

Medical Imaging providing all the information to be used for diagnosis and prognosis pur-

pose represents the technical support for the biomarker study. The correlation with the

severity of the disease determined with the cognitive testing represents the relevance to

the disease. The performance of the marker is represented by the level of accuracy for de

diagnosis and prognosis. The third criterion for validating the biomarker is represented by

its generalization capability. The heterogeneity of the database, as well as the large number

of subjects provide the validity for this aspect. From our perspective, all the three points

de�ning the biomarker have been attaint. In these conditions we can conclude that medical

imaging can e�ectively be used as a biomarker for PD.

From the point of view of the evaluation and testing criteria, the contributions revealed

in this chapter represent the testing technique. This technique mixes the cases for reveal-
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Figure 6.10: The Results Window with numerical evaluation for an example patient. The

3D view of the �bers and VOIs for the same patient is presented in �gure 6.4

ing the e�ects of the cognitive parameters and the tests that are not a�ected by these

parameters. The feasibility analysis has already been presented in [Teodorescu 2009b],

[Teodorescu 2009c] and [Teodorescu 2009a]. The original approach on the segmentation of

the Putamen was presented in [Sabau 2010]. The �bers and the PDFibAtl@s prototype is

presented in [Teodorescu 2010] and as a demo version at [Teodorescu 2009b]. The diagnosis

and prognosis, representing the �nal module of our prototype, using the second and forth

degree polynomial algorithms, were presented in [Pataca 2010].

Evaluating the obtained volumes of interest, as well as the techniques implemented,
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proved to be appropriated for the type of image that we are dealing with, as well as for

the resolution of these images. The speed of computation reveals a system that performs

in a few minutes the detection of the regions of interest, as well as the computation of the

�bers.

We have found a way to evaluate our algorithms separately and the whole approach

as well, using the PDFibAtl@s prototype. We need to tune the diagnosis and prognosis

functions for a better detection rate. These functions have been created using the manual

segmented Putamen data with additional �ve cases among the cases processed using the

automatic Putamen segmentation.

All the elements in the system a�ect each other. The Putamen accuracy determines a

higher accuracy on the �bers and the �ber accuracy is essential to diagnosis and prognosis

module. We note that the results and the algorithms presented in this study have been

successfully selected (at the methodology level) and presented in signi�cant radiologic and

scienti�c communications ([Teodorescu 2010] [Teodorescu 2009a] [Teodorescu 2009b]).
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T
he research study presented in this manuscript is performed to determine the possibility

to use the DTI image as biomarker. It represents the entire demarche starting from

the feasibility study in the context of the existing PD biomarkers and achieving to de�ne

and implement, test and validate a prototype integrating all the methods de�ned by our

study.

Our research includes several levels where new scienti�c methods are developed. Propos-

ing a way for estimating the severity of the PD based on the information provided exclu-

sively by the image, represents altogether a new demarche. The possibility to use the

medical image as biomarker exploits a new dimension: the visual information that has not

been used by itself in PD diagnosis. Determining a measurable value starting from this in-

formation represents an alternative to the current cognitive test. The prognosis represents

another scienti�c act that based on measurable functionality and speci�c features determine

an exhaustive scale for the diseases severity. It is moving the diagnosis moment towards

the non-speci�c symptomatic area determining the medical imaging to be considered as an

end-point marker. Our study placed DTI imaging among the risk-evaluating markers by

attempting to determine the early cases and evaluate the prognosis.

The system presented considers the PD pathology manifested at the image level in physiol-

ogy changes and interprets these changes at the clinical level. This perspective places the

DTI among the clinical diagnosis biomarker as it determines the severity of PD acting at

the clinical level.

These scienti�c aims are reached by studying the speci�cities of the medical images and

evaluating the possibility to extract and use the technical information related to the disease

pathology. The research starts by analyzing the medical premises and their correspondence

on the image modality and the speci�c elements. The technical elements composing the

medical image speci�cities are analyzed as well and their applicability is determined by the

PD pathophysiology content. This content represented as information at the image level

is investigated by the feasibility study. Correlating this information with the clinical level

reveals the relevance to the disease. This relevance is one of the main criteria for validating

a biomarker and the DTI has proven to be meaningful from the feasibility study until the

feature level. From this level on, the computer vision elements interpret the features and

the relevance value is transformed in measurable one on the disease speci�c scale.

Once the relevance is determined, we needed to determine the performance of the DTI

as marker. For this purpose, we developed methods and algorithms capable to manage
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the information from the DTI level up to the knowledge level, by following the pathology

landmarks. Each step of the way, we are performing testing to determine if the information

is a�ected by the methods used or by external factors. The result of the research at the

technical level is represented by methods constructing the PDFibAtl@s prototype. The

initial results of each method are updated by new methods and the evaluation and validation

presented in the previous chapter are promising. Considering this aspect, we can con�rm

that DTI medical image possesses the performance characteristics of a PD marker that

recommend further study and development for a better exploitation of its capabilities in this

sense.

The third criteria for validating a marker, according to [Marck 2008], is its degree of

generalization. This aspect is treated by the heterogeneity of our database where just the

damaged images could not be used. The aspect of demographic variability, as well as the

intra and inter-patient variability is taken into consideration by our study and solutions are

found. In this case we can certify the degree of generalization of the DTI independent of

the demographic aspect or the patient variability.

The DTI image con�rms the three general criteria for de�ning a biomarker, based not

only on the theoretical aspects and hypotheses, but backed up by the technical development

and implementation and by the study on a vast database.

There are three aspects that can be evaluated in our work: the main purpose of our

research for establishing the DTI image as a biomarker, the technical elements developed

and implemented for that purpose and the clinical applicability of this marker. As the �rst

aspect is the de�ning element for the technical elements, its validity has been determined

by the results obtained.

PDFibAtl@s, the prototype system that encapsulates all the new proposed methods and

algorithms presented in this thesis, represents the applicability of the study. It designed to

be an aid, an alternative to the cognitive testing to reveal a more complex image of the PD,

o�ering quantitative unbiased information from the medical image level. In this manner,

by using the computerized analysis of the images, according to recent studies [Sonka 2009],

the performance of the radiologist increases. We eliminate completely the observer from

the image study, by modeling and including at the same time its experience. Therefore, we

aim at being more accurate at the feature detection and quanti�cation phase.

Analyzing the results obtained by each new method, we have to take into account the

fact that the image quality together with patient variability in�uences the algorithms. The

inter-patient variability solved at the pre-processing level by the geometrical parameters,

together with the intra-patient variability solved by developing separate algorithms for each

hemisphere of the brain are new elements introduced for facilitating the management of the

image information. The pre-processing algorithms eliminate the noise and o�er, together

with a clean start for the processing level, valuable elements further used.

At the processing level, the DTI information analyzed is extracted by segmentation and

tractography. The image information is fused to bene�ciate of two speci�c features from

the DTI protocol base: the FA and the EPI. The segmentation o�ers an error rate of 37-

40%, which a�ects the tractography performance. When developing our new segmentation

method, the upgrade on this method determined better results on the tractography as well,

resulting on an increase with 19%. This aspect reveals the importance of the Putamen

in the tractography as well as the robustness of the segmentation method with the direct

implication at the feature extraction level. The importance of the segmentation is given

also by the fact that unlike the manual segmentation, the automatic approach is much

faster and is not in�uenced by the specialist skills and his capacity to distinguish between

close levels of entropy on the image voxels. The computational speed is superior also on

the tractography, due to the use of less memory as we are taking into account only the
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�bers starting from the midbrain and we are validating only those reaching the Putamen

volume. The performances of the tractography with a level of 78.5% accuracy provide a

feature database that can be further used for the diagnosis and prognosis purpose. The

metrics introduced for the �bers evaluation provide viable data for the prognosis functions

so that a value of 45% accuracy can be obtained.

PDFibAtl@s is a new system, able to automatically detect the volumes of interest for

PD diagnosis using the DTI images and a geometrical approach. The algorithms included in

this platform are original and are based not only on the brain geometry, but also including

medical knowledge by taking into account the position of di�erent anatomical structures at

the brain level, hence the atlas dimension. At the anatomical level, introducing parameters

for �ber evaluation and eliminating the demographic factors represents another important

contribution of this thesis. The automatic dimension of the prototype is achieved by these

parameters used in the new algorithms that perform detection of the elements that until

now were obtained by user interaction: detection of the slice of interest, detection of vol-

umes of interest, automatic detection of the registration parameters. The registration itself

represents a manner to fuse information from two di�erent type of DTI. Concerning the

fusion contribution of our work, it brings together the FA clarity at the Putamen level with

the tensors matrix for the �ber tracking algorithms.

The technical element performing the transfer of information from the feature level to

the clinical one is the method able to evaluate and predict PD. This method is contemplating

the possibility to obtain numerical relevant measures on the early cases as well, not only

on those starting from the second stage of the disease. The method includes evaluation

and interpretation using as source the DTI image features and the medical knowledge. The

output is placed on the H&Y scale for estimation and comparison with the cognitive test.

From the clinical standpoint, our study is o�ering a new method for the neurologists to

detect and predict the PD. The disease evolution can be studied from the image level and

for now it is a mean to verify/con�rm the diagnosis determined by cognitive testing.

7.1 Scienti�c Contribution

The main scienti�c contribution is the proposition of a new PD biomarker represented by

the DTI. The theoretical premises for this purpose have as source both the medical and the

technical domains: the PD pathology and physiology reveal the elements that can be found

in the image, the technical aspect studies the presence at the image informational level of

these elements and the way to use them. The theoretical premises are studied and validated

by the feasibility study, original trough the testing method that had to be sensitive only

to PD and unbiased by other elements. This study o�ered the possibility for the technical

aspect to be studied.

The scienti�c aspect refers to the originality and the impact of the method, as well as its

necessity on the area where this method is employed. Both technical and medical areas have

to gain from new methods in the medical image processing domain. Combining medical

knowledge with new technical approaches, we are able to o�er new information that can be

exploited for a new overview on the PD. At this point, we are analyzing the originality of

the methods, the challenges overcome and the di�erence with other methods.

Our scienti�c contribution starts at the pre-processing level where we develop meth-

ods to overcome the noise speci�c for head DTI images, with even higher interference in the

low resolution images. According to our preliminary study, the skull in�uences the overall

results at the anisotropy level. The method removing the skull performs the noise removal

as well, so its utility is doubled.
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For the geometry based parameters, used further at the volume segmentation level, addi-

tional study and more complex methods are developed. The automatization of the segmen-

tation approach, as well as the registration is implemented by using these parameters. The

fact that the parameters are independent on the patient demographics o�ers inter-patient

independence and overcomes this barrier making possible the automation of the methods

at the processing level. The inter-hemisphere axis used for the volume segmentation and

for the registration method, is one of the elements used for overcoming the intra-patient

variability. The same variability has to be overcome at the volume level prior to the seg-

mentation.

The slice detection method procures the automatic placement for the volume segmenta-

tion algorithm and takes into account the volumetric and anatomical aspects of the brain.

This method considers the position of the patient in the image - patients having smaller or

bigger skulls or slices starting higher or lower on the patients skull (e.g. at the ear level

or under the level of the nose). Using this algorithm, we overcome the di�erences between

patients and we provide a robust placement for the volume segmentation.

In this manner, the sex di�erence transposed as volume di�erence is overcome, together

with the race di�erence resulting also in volume di�erence. The fact that we take into

account these variables from the demographic of the population constitutes a contribution

by itself. This variability is transposed into parameters at the geometric level providing the

elements an automatic approach on the segmentation and the registration methods.

The speci�city of each patient is given also by the shape and the placement of the

volumes of interest inside each image ( e.g. some patients have one hemisphere more

developed than the other and the anatomical regions are thus di�erently developed or

placed higher on hemisphere than on the other). This variability is surmounted by the

methods that establish the starting points for the active volume detection. We surmount

the speci�city problems by using for the seed placement the anatomical map of the brain

and the relative placement of the volumes of interest inside the brain combined with the

geometrical parameters. Depending on the volume of interest, the algorithm that detects

the relative placement on the axial slice is di�erent. The midbrain volume is placed on the

inter-hemisphere axis and the Putamen is placed on the superior axial slices of the brain,

next to the anatomical area named Globus Pallidus. This relative placement is based on

the anatomy of the brain, like an atlas. The atlas mapping of the brain o�ers just the

relative positioning; the actual positioning is given by the intensities of the pixels. The

segmentation process is based on automatic detection of the region based on the voxel

intensity. This approach determines the volume of interest independent on the size of the

anatomical region and its angulations or its positioning inside the brain. Our method is

automatic but also adaptive to each patient. The volumes of interest are speci�c for the

disease - the substantia nigra and the Putamen - and the manner in which they are detected,

by combining the image speci�c processing methods, together with the geometrical elements

and by integrating the anatomy elements. The method is applicable to any patient as it

does not take into account the provenance of the case, for shape variability, or the volume

of the brain, changing according to the sex of the subject. For these reasons, the method

is a complex one, integrating concepts from the medical knowledge for technical purpose.

For the midbrain area, we are using the clustered EPI image that is able to determine

the midbrain, independent on the intra-patient variability.

At the Putamen level, the algorithms are di�erent on the left and the right side of

the brain, as we take into account the di�erences between the two hemispheres. Also, the

shape is taken into account at di�erent levels of the volume by applying the triangular or

quadrilateral approach. This versatility makes the di�erence between our approach and

the classical atlas based approach. On the manual segmentation directly on the FA image,
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the anisotropy with the piercing �bers on the image determines "holes" on the volumes

due to the di�erence between the voxels. Our approach using the clustered image with the

geometrical segmentation does not have this problem and eventual �bers passing through

the Putamen are validated, which is not the case for the eventual �bers passing through

"holes" on the manual determined volume.

The registration method combines the manual method and the geometrical approach,

but it is automatic, as it detects the geometrical elements at the pre-processing level. The

robustness of the geometrical approach, combined with the fact that this method eliminates

the inter-image variability as well, represents upgrades to the manual approach, which does

not bene�ciate of the accuracy and objectivity of an automatic approach. This method

actually fuses the information extracted by segmentation form the FA image to the EPI

volume.

The most important aspect of the originality of the approach is the combination between

the automatic volume detection integrated on the global tractography. The metrics used

for estimating the �bers are speci�c to this approach and are meant not only to evaluate

the �bers, but also to overcome demographic variation.

The tractography methodology that uses the volumes of interest is faster than the

original one by the fact that it uses only a small volume of the brain for the �ber growth:

the midbrain, it researches 2-4 slices and validates only the �bers reaching the Putamen.

The originality is sensed not only by the computational time, but also by the ability to

automatically separate the �bers we need from all those residing on the midbrain. Using

the �bers to evaluate the PD evolution is highly reliable. Our method adds the 3D aspect

in the evaluation, by including the �bers.

From the analysis and interpretation perspective, using just the fuzzy rules from

an ANFIS architecture for diagnosis proved to be a good approach, but this approach is

limited by what the system knows, by what it has learned. This is the reason why a

variation function on the features is more suitable for diagnosis and extrapolation. The

contribution at this level is given by the function performance and its rate of transfer of

knowledge from the feature level to the semantic level. The prognosis evaluation using the

ANFIS architecture represents a �rst approach with the additional Lagrange polynomial

functions. This approach de�nes not only the functions but also a hybrid adaptation using

our new features for the IAPE and for PD- PD-APE methods. Our methods combine the

knowledge form the fuzzy systems with the mathematical evaluation of the features from

the neural networks o�ering exactitude.

The anatomy of the brain incorporates the medical knowledge to the approach, supports

the technical elements and is able to link the processing algorithms by o�ering decisional

rules for the detection steps of our system. The PD pathology determines physiological

changes that are exploited and taken into account with our approach from the image stand-

point. In this manner we introduce pathophysiology on the diagnosis process and we estimate

it using medical knowledge in order to transfer the information to the clinical level.

7.2 Clinical Impact and Prognosis potential

Being able to con�rm the cognitive test performed to place the patient on a severity scale

is helpful for the medical doctor and o�ers the possibility to augment the degree of trust

on the diagnosis. This reliability is achieved by the fact that our test is entirely based on

the image.

Another important aspect is represented by the fact that the diagnosis is directly liked

to the severity of the disease, as it can be detected and placed only after it passes the second
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level on the H&Y scale. The technical measurable system presented in our approach o�ers

the possibility to apply it on any patient at any level of severity of the disease.

The lightness of these algorithms is contained in the versatility, as these volume algo-

rithms can be applied on other types of medical images. We can extend this approach

to other similar diseases like Alzheimer by determining in the same manner the speci�c

bundles of interest. We can envision an automatic intuitive atlas of the brain by using

the detection of all the anatomical structures. The advantage in this case would be that

mapping is not involved and therefore, the demographic aspect is not a problem anymore.

The diagnosis and the prognosis are highly dependable as the early diagnosis is un-

reachable without having the prognosis step de�ned. This step attained by evaluating the

patients from our database and placing them on an evolutive function. Extending this

function and extrapolating towards the low values of the scale we can reach the early stages

of the disease severity. The features values for this PD severity provide the information

necessary for placing new patients at this level and providing early diagnosis. In this man-

ner we use the prognoses for establishing new diagnosis support. The medical doctors can

study the detected early cases provided by the prognosis functions and de�ne tests at the

cognitive level as well.

With the �rst results from the feature extraction module, we are able to estimate the

severity of the disease, using standard polynomial functions. Modifying these standard

functions by adding medical knowledge as well as cases for the stages that were not present

in our database will certainly improve this part of PDFibAtl@s.

7.3 Scienti�c Perspectives

The scienti�c contributions o�er new perspectives and can be further improved as well.

The thesis represents a study at the image level with new methods that provide measurable

values of the PD severity. As these types of images have not been used as source for

biomarkers, our approach not uses the information content as biomarker itself. The research

opens new perspectives for biomarkers as a precedent for other methodologies and represents

a comparison element for future approaches. As our biomarker is based on the image

information and we are fusing it in our approach, new DTI images can provide additional

complementary information and upgrade the marker.

From the technical perspective we propose a robust system - PDFibAtl@s - that encap-

sulates all the necessary image treatment starting from the scanned images to the motor

�bers and their density. Automatic detection of the volumes of interest contours an atlas-

based method entirely independent on the subject. Even if this approach is speci�c for the

disease, the proposed detection methods can be used for other diseases, once the speci�c

VOIs related to the disease have been identi�ed (with the support of neuro-radiologists).

For each stage of the system, there are interesting perspectives for our new algorithms.

The pre-processing methods used for eliminating the noise and the skull, independent

on the shape of the head and its volume, can be applied on any type of head medical image.

The fact that our approach provides good results on low-resolution images like EPIs, means

that on high resolution images the result can be improved. The geometrical feature detection

is a useful tool on any type of image, independent on the anatomical region. The inter-

hemisphere axis detected has multiple applications as well, o�ering not just a limitation

for the segmentation algorithm, but also directionality on the positioning of the patient in

the image, useful in registration methods, warping or fusion. This particular element has

its utility in other diagnosis methods that need a comparison between the two hemispheres

(e.g. brain stroke or tumors).
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At the segmentation level, our method can be applied for any anatomical volume

of the brain, as long as its relative position inside the brain volume and its position at

the axial level are known. The fact that the active tracking algorithms are either based

uniquely on the voxel entropy, or on the geometrical limitations, provides a wide range of

applicability. In case of an anatomical region well de�ned, the method developed for the

midbrain segmentation can be useful, together with the algorithm for determination of the

seeds (e.g. the caudate nucleus positioned on the inter-hemisphere axis and having well

de�ned contour). The algorithm developed for the Putamen can be applied for structures

that are not positioned on the hemispherical axis (e.g. the fornix formations).

For positioning the structures we can even envision an automatic speci�c atlas that com-

bines our segmentation methods and uses geometrical adapting algorithms for the anatom-

ical elements that provide this information, together with the malleability of the free-form

intensity based algorithm developed for the midbrain area. In the case of such an atlas,

the anatomical regions that do not consist of a speci�c form and/or clear limitation can be

detected using the surrounding structures as limitations. This type of atlas di�ers from the

classical one, by the fact that it uses only the relative positioning contained in a classical

approach, but it is entirely molded on the speci�c structures of each patient. In this way, a

much more correct evaluation of the structures can be achieved.

A follow-up study using our method of segmentation on the volume of speci�c anatomical

regions of the brain can be used to determine the geriatric e�ects on a normal brain on

the control cases, by comparison with those a�ected by the disease. Similarities among

control patients at the volume level de�ne a "normal" aging brain. Volumetric elements

that are similar among PD cases but di�er from the controls, represent speci�c metrics for

the disease and its severity and can be used for a PD model de�nition.

The registration method, fully automatic, based on the geometric elements can be

further developed for determining skewness elements. Starting from our method, other

type of DTIs can be fused at the information level, even if they have di�erent size and

orientation. This purpose can be reached as we already have the volumetric elements and

relative positioning of the patient in the image, therefore the ration between two di�erent

images as size and skewness should be straightforward. Not only fusion can be achieved in

this manner, but also other similar processes like warping and alignment. The automatic

method for determining the corresponding structures for the registration algorithm can be

applied for other registration approaches that use parameters, as these elements are not

a�ected by changes at the structural level of the brain (e.g. tumors and/or brain stroke).

An iconic registration, using the geometrical parameters determined with our method and

computing the a�ne elements as presented like we did could be upgraded and automatized

as well.

Another very important aspect of our approach is the tractography algorithm based

on the anatomical elements: the deterministic approach for the �bers - the WM impor-

tance and the way the motor tract is placed inside the human brain used for the global

methodology. The method itself can be improved and the angulations limitation eliminated

as only �bers having certain directionality will reach the second volume of interest. The

information at the voxel level providing the directionality of the �bers can be further used

to verify if the same �ber passes more than once trough the same slice, eliminating in this

way a source of error. This approach is only feasible when having a limited amount of

�bers, just like our case, otherwise the computational e�ort would be much too heavy on

the memory capabilities.

Another application of this approach using a limited amount of �bers can be detected in

annotating the �bers and by performing comparison between patients to measure the dif-

ference on the severity of the disease between the left and right side. Performing the same
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study at di�erent time lines on the same patient can provide information on the way that

those �bers are a�ected, the most a�ected ones and/or the anisotropy levels that are critical

for the most a�ected �bers.

The limits imposed for the �ber tracts are not only for achieving a certain sensitivity in

choosing the bundle of interest, but also to validate the obtained bundle from the anatomical

point of view. This validation based on the placement of the �bers in the volumes of interest

is performed by the neurologist. The volumetric elements can determine other bundles of

interest, depending on the volumes that these �bers pass trough.

Re�ning the �ber detection method and making it speci�c to the gray matter can

augment the degree of trust for the diagnosis and add reliability to the system. It can also

o�er a higher correlation factor between the diagnosis success rate and the detected �bers.

These �bers o�er the possibility to study not just the e�ects of this particular disease,

but also the dopamine �ow changes and the degeneration of the �bers depending on the

severity of the disease. Applying the global tractography approach on the same patient

and providing a follow-up in time, the �bers value a�ected by the pathology de�ne the

disease progression. This progression is not linear and using this method we can determine

its variation in time. Our metrics at the �ber level can be further used for this purpose,

indicating the pathology level. These metrics would not be a�ected by an atrophy that is

unavoidable in geriatrics.

The inter-hemisphere independence of the metrics can be used to determine the distinc-

tion at the 1.5 and 2.5 H&Y severity levels. This independence can be exploited by the

fact that the disease a�ects more the left side, as well as the degree in which the left side is

more a�ected than the right one. This information included in the diagnosis and prognosis

method makes the di�erence between the old H&Y scale and the new one. In this case we

can re�ne the results from the prognosis method and to update the diagnosis set of rules.

Using a newer tractography method can provide more accurate results and augment

the prognosis rate. A probabilistic approach can be used as well because we need just a

bundle of �bers and thus the computation time would not be too long, like in the Di�usion

Tracking module from TrackVis, but in this case, the noise must be eliminated.

The diagnosis and prognosis are linked by the variation function of the �bers mea-

sures on the H&Y scale. This approach provides the system with a reliable and �exible

way to include an evaluation based on medical knowledge, but also the possibility to change

the set of rules by adding new ones that can provide a better clustering. A combination of

expert systems and neural networks can provide also better �nesse on the diagnosis step.

The prognosis provides values for new cases, even for the early cases of the disease. Our

own method for prognosis based on Lagrange polynomial functions can be upgraded by

using functions that have a higher sensitivity to the metrics that we are using. As the

detection of the polynomial degree that better determines the severity of the disease has

proved to be a good step on the right direction. Introducing the new cases correctly detected

among the initial points can augment the rate of prognosis. A mathematical analysis of the

variation function can provide a better evaluation at this point. Di�erent metrics provided

for the prognosis step can result in di�erent values for this function, but our approach can

be used even in these circumstances. Using the anisotropy level from the Substantia Nigra,

or a combined value between this value and the �ber density, can be used with the same

prognosis method. This prognosis method can be applied in other systems or for other

diseases as well because it is entirely independent.

DTI image can be used as a biomarker in PD detection and prediction and we

are o�ering an entirely automatic prototype that using these images provides a numerical

value of the disease severity on any patient for the H&Y scale.
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A.1 Introduction and applicability of PDFibAtl@s

Despite the advances in medical imaging and analysis for Parkinson's Disease diagnosis, the

cognitive testing methods are the ones used, almost exclusively. Our prototype proposes an

alternative method for these tests, using the same scale as the one used in cognitive ones.

In cognitive testing the patient's estate is estimated based on the evaluation placed on

dedicated scales like UPDRS (Uni�ed Parkinson's Disease Rating Scale) and H&Y (Hoehn

and Yahr) scale. On the same scale we illustrate the severity of the disease based exclu-

sively on information from the Di�usion Tensor Imaging (DTI) images. The advantage of

introducing these data resides not only on its nature, but also on providing a measurable

value for the disease and the possibility to use it for prognosis.

In our approach we extract and fuse image information from di�erent Di�usion Imaging

types (DTI): Echo-Planar Imaging (EPI) and Fractional Anisotropy (FA). We are using a

rather large database, having 143 subjects: 68 PD patients and 75 control cases in develop-

ing our prototype. These subjects underwent DTI imaging: TR/TE 4300/90; 12 directions;

4 averages; 4/0 mm sections; 1.2 x 1.2 mm in-plane resolution. The images are produced

using the DICOM standard and our system used this format for handling the axial slices

for pre-processing.

A.1.1 Image Processing Features

The processing is based on the fact that the dopamine, one of the main neurotransmitters, is

lost when PD is installed, determining the trembling e�ect on the patients. Recent studies

have shown that by the time the disease is detected, 89-90% of the dopamine is no longer

produced. The quantity of this neurotransmitter a�ects the motor �bers and determines,

among other symptoms, the speci�c tremor for the patients when its producing decreases.

We extract the neuromotor �bers and use them to determine the patient's condition, eval-

uating it on the H&Y scale. For the processing stage, using the EPI and the FA image
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stacks, we extract two volumes of interest: the midbrain containing the Substantia Nigra,

the source of dopamine and the Putamen, brain anatomical region a�ected by the disease

where the neuromotor �bers pass through. The extracted volume of the two anatomical

structures can be studied as results after the image processing stage.

A.1.2 Analysis Features

For estimating the extracted neuromotor �bers we are using a global deterministic tractog-

raphy. After the �ber tracking the extracted values on both sides of the brain are displayed

for the user and estimated by using our metrics based on density and volumetric elements:

FD =
FNr

V olBrain
(A.1)

FDrel =
FNr

V olV OI
(A.2)

where FD represents the �ber density measured using the obtained �ber number, FNr, and

the brain volume; FDrel Is the �ber density evaluated relative to one of the volumes of

interest: the midbrain or the Putamen. As for the volumetric measurement, it is based on

the �ber number FNr and the voxel measures (Vheight , Vwidth and Vdepth):

FV = FNr ∗ Vheight ∗ Vwidth ∗ Vdepty (A.3)

A.1.3 Diagnosis and prognosis evaluation

These measures are displayed and used on the diagnosis and prognosis module, providing

the H&Y (Hoehn & Yahr scale) estimated value. This value represents the severity of the

disease, making also the di�erence between the control and PD a�ected subjects. Providing

a value of the PD severity (1-5), even for the mild cases (1 or 1.5 on H&Y scale), we are

able to rendering a prognosis measure.

A.2 Using PDFibAtl@s

For using our prototype there are speci�c requirements regarding the capabilities of the

machine where it is installed and the image protocol provided. Speci�c elements illustrating

the parameters for the protocol are required as well.

A.2.1 Requirements

Computing requirements : There are several requirements to be ful�lled for the system

so that our prototype can work properly. Also the format of the input information is

important for an optimal set of results. The computer used for running the software should

be capable to support 3D image reconstruction and high memory capabilities. The prototype

needs 4G of RAM and works well on 4.8GHz (Dual core 2.4 GHz). We recommend using

Windows XP/Vista/7 for running the software.

Files used The image �les in DICOM format as acquired with the Siemens Avanto 1.5T

are chosen as input for the system. Additionally the dicomInfo text �le is set to extract

the slice number and the imaging type for 3D rendering and further processing. It contains

the following information from the DICOM header:

5 -the information for characteristics for the patient identi�cation
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Figure A.1: Windows layout

0010,0020 -patient ID

0010,0040 -patient's sex

0010,1010 -patient's age

0018,0050 -slice thickness

0028,0030 -pixel spacing

7 - the information for image identi�cation and 3D reconstruction

0008,103E -series description

0020,0013 -image number

0018,0050 -slice tickness

0028,0010 -rows

0028,0011 -columns

0028,0030 -pixel spacing

0010,0020 -patient id

1 - information for patient



116 Appendix A. User Guide for PDFibAtl@s

0010,0020 -patient id

1 -information for EPI di�usion direction

0018,0024 -sequence name

BValue.txt - �le containing the B value parameter used for the acquisition protocol, set in

our case at 800. TensorDirections.txt �le contains the di�usion directions - the number of

directions (13 in our case) and each line represents a di�usion direction, starting with the

B0, which is (0,0,0).

The ResultsManualPutamen.csv �le represents the ideal set of values for the evaluation

module, diagnosis and prognosis and remains unchanged. Changing this �le will result in

modi�cations for the prognosis functions and will a�ect the H&Y estimated value.

We provide all these �les with the settings used for the parameters in our database.

A.2.2 Software Installation

For the developers we can provide the .jar �le that can be integrated in any Java program

and further used. For the uses we provide a basic package with the .exe �le and the

additional �les used for our database. These �les have to be changed, depending on the

protocol for the image acquisition.

A.2.2.1 Main installation steps

• Downloading the application

• Extracting the archive

• Starting the application

Please make sure that the settings from THE ENTIRE requested �les match with your

image acquisition protocol. After downloading the application the �les presented in �gure

A.1 represent the provided data. For running the application in Windows the user needs

to run "BrainSpace.exe". There might be a security warning like the one displayed by

�gure A.2 which depends on the Windows security settings. By choosing the Run button

as presented in the image, the user is able to start our application.

A.2.2.2 Commands

For the user that provides the medical images (DTI) with the �les containing the protocol

(see �gure A.3), "BrainSpace.exe" is su�cient. This application starts by requesting the

location of the protocol �les (�g. A.4), if they are di�erent from ours, and the location of

the DICOM patient �les . Note that changes can be made directly into our text �les for

the protocol parameters.

For selecting the patient DICOM �ies the used needs to indicate the location of the

folder containing all the images with the "Patient folder" button from �gure A.3. The

used is requested to indicate the location of the folder as presented in �gure A.5.

After choosing all the requested �les, the systems starts processing like in �gure A.6.

This processing stage is indicated by the main application window by displaying the

message "Processing" and once a patient is identi�ed and computation is started from that

patient, its ID is displayed as well. The �nalization for each patient is signalized by the

system by writing "done" on the main application widow and the display of the "Results"

window.
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Figure A.2: Run the application

Figure A.3: Starting window for the application

Figure A.4: Choosing the DICOM �les
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Figure A.5: Choosing the DICOM �les

Figure A.6: Processing the patient

A.2.2.3 Results.Interpretation

The patient data is displayed �rst: Patient Id, age and sex for statistical analysis and further

study purposes. The brain volume is computed in mm3 and similarly the volume for the

segmented midbrain and the Putamen in mm3, but on each side of the brain to determine

di�erences in the structures a�ected, for each hemisphere.

The number of �bers crossing the two regions at the same time is provided for each

side as well and displayed in the window by the "Fiber Number". Using the voxel size

(equation A.3) we estimate the �ber volume as well in mm3 and display it under "Fiber

Volume".

For the �ber density we provide the relative value to the midbrain volume computed

using our equations in A.2 displayed by the "Fiber density" line for each hemisphere.

After the computation is �nished, the results window displayed (see �g. A.7) and all

the values for the �bers, together with patient identi�cation and the estimated H&Y value

are provided. Once these �les provided, the 3D rendering is performed and the user has

the possibility to observe the motor tract by selecting the "Show 3D" button.

The user has the possibility to display a graphical function that illustrates the placement

of the patient on the "ideal" data set. This data set is the one containing the Putamen man-

ually segmented. This graphics is provided for two distinctive methods: IAPE (Independent

Adaptive Polynomial Evaluation) and PD-APE (Parkinson's disease - Adaptive Polynomial

Evaluation). Accessing the corresponding buttons from the results window displays the

graphics (e.g. �gure A.8).
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Figure A.7: Results for patient 50

A.2.3 Single patient processing vs. multiple subjects processing

The software is able to process one or more patients, depending on the images from the

source folder. If there is only one patient in the indicated folder, the system stops after

processing this patient, otherwise it starts automatically processing the next patent (see

�gure A.9). For processing a set of patients automatically, all the images must be placed in

the same folder. For processing the patients one by one, they have to be separately stored

in folders.

When all the patients from the folder have been processed, the system displays the

message "Finished" and its execution is terminated (see �gure A.10), but it still provides
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Figure A.8: PD-APE for patient 50

Figure A.9: Processing Multiple patients

the results and graphics, until the user chooses to close the speci�c windows or the main

application window.

The value for the H&Y is presented using two methods: IAPE and PD-APE as they

provide di�erent accuracy. The PD-APE provides 95% accuracy but only on patients,

whereas IAPE provides for all the cases 74% accuracy.
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Figure A.10: Finishing all the patients from the folder

A.3 Errors and contact

The system has an error log ("error.txt") where all the malfunctions detected by the

system are registered.

For malfunctions and further questions please contact us:

IPAL (UMI 2955)

1 Fusionopolis Way

#21-01 Connexis (South Tower)

Singapore 138632

DID: (65) 6408 2542

Tel: (65) 6408 2000

Fax: (65) 6776 1378

Email: Daniel Racoceanu: daniel.racoceanu@ens2m.fr

Roxana Teodorescu: ro.teodorescu@gmail.com
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Figure A.11: Simultaneously display of two patients
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Teodorescu, R.; Racoceanu, D.; Leow, W.-K. & Cretu, V. Prospective study for semantic

Inter-Media Fusion in Content-Based Medical Image Retrieval Medical Imaging Technol-

ogy, 2008, 26, 48-58

Anda Sabau, Roxana Oana Teodorescu and Vadimir Ioan Cretu. A New Cerebral

Anatomical-Based Automated Active Segmentation Method - to appear, Scienti�c Bulletin

of the Politehnica University of Timisoara, Transactions on Automatic Control and

Computer Science,IEEE Catalog Number: CFP10575-CDR, ISBN 978-4244-7431-8, 2010.

B.2 Book Chapters

Roxana Oana Teodorescu, Vladimir Ioan Cretu and Daniel Racoceanu

Medical Image Processing and Analysis for Parkinson's Disease Diagnosis

and Prognosis, book title "Biomedical Engineering, Trends in Electronics,

Communications and Software", Ed. Anthony N. Laskovski, http://www.

intechopen.com/articles/show/title/parkinson-s-disease-diagnosis-and-\

prognosis-using-diffusion-tensor-medical-imaging-features-fusion, ISBN 978-

953-307-475-7, published by INTECH, 2011

Lacoste, C.; Chevallet, J.-P.; Lim, J.-H.; Hoang, D. L. T.; Wei, X.; Racoceanu, D.;

Teodorescu, R. & Vuillenemot, N. Inter-media concept-based medical image indexing and

retrieval with umls at IPAL Lecture Notes in Computer Science, Evaluation of Multilingual

and Multi-modal Information Retrieval, 2007, 4730, 694-701.

Racoceanu, D.; Lacoste, C.; Teodorescu, R. & Vuillemenot, N. A semantic fusion

approach between medical images and reports using umls Lecture Notes in Computer Science,

(Eds.): Asian Information Retrieval Symposium, 2006, 4182, 460-475.

B.3 Conferences & Workshops

Anda Sabau, Roxana Oana Teodorescu and Vadimir Ioan Cretu. Automatic Putamen

Detection on DTI Images. Application to Parkinson's Disease. ICCC-CONTI, vol. 1,

pages 1-6, may 2010.

Teodorescu, R.; Racoceanu, D.; Smit, N.; Cretu, V. I.; Tan, E. K. & Chan, L.-L.

Parkinson's disease prediction using di�usion based atlas - poster session SPIE - Computer
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Aided Diagnosis [7624-78] PS2, 13-18 Febr., San Diego CA, USA 2010.

Teodorescu, R.; Racoceanu, D.; Chan, L.; Lovblad, K. & Muller, H. Parkinson's

disease detection using 3D Brain MRI FA map histograms correlated with tract directions -

oral presentation Neuroradiology (Brain: Movement and Degenerative Disorders SSC13 -

09) RSNA,95th Radiological Society of North America Scienti�c Conference and Annual

Meeting, November 29 to 4 December, McCormick Place, Chicago IL, USA, 2009.

Teodorescu, R. O. & Racoceanu, D. Prognosis of Parkinson's Disease - poster

session, A*STAR Scienti�c Conference, 28-29 Oct., Biopolis, Singapore 2009.

Teodorescu, R. O.; Racoceanu, D. & Chan, L.-L. H&Y compliant for PD detection

using EPI and FA analysis - poster session, NIH Workshop Inter-Institute Workshop on

Optical Diagnostic and Biophotonic Methods from Bench to Bedside, 1-2 Oct, Washington

DC, USA 2009.

Teodorescu, R.; Cernazanu-Glavan, C.; Cretu, V. & Racoceanu, D. The use of

the medical ontology for a semnatic-based fusion system in Biomedical Informatics -

Application to Alzheimer disease ICCP Proceedings, 2008, 1, 265-268.

Teodorescu, R.; Cretu, V. & Racoceanu, D. The use of medical ontology in a

semantic-based fusion system CONTI, 2008, 1, 48-52.

R. Teodorescu and D. Racoceanu. Semantic Inter-Media Fusion Design for a

Content-Based Medical Image Retrieval System. Japanese Society of Medical Imaging

Technology - JAMIT-ONCO-MEDIA workshop, vol. Tsukuba, Japan, pages 43-47, 21 - 22

july 2007.

B.4 Technical reports

Roxana Teodorescu. H&Y Compilant for PD Diagnosis and Prognosis using EPI and

FA images. Phd report no. 2, Politehnica University of Timisoara, February 2010.

Roxana Oana Teodorescu. Feature extraction and Ontology use for Brain medical

images - PhD Report No 1. Rapport technique 1, UPT and UFC, January 2009.

B.5 Research stages

February-April 2009 Research stage in Singapore at IPAL(Image & Pervasive Access

Lab)- the Singaporean-French Image & Pervasive Access Lab under the supervision of Prof.

Daniel RACOCEANU

April -October 2009 Research stage in Singapore at Image & Pervasive Access Lab

under the supervision of Prof. Daniel RACOCEANU from French National Research

Center.
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18-20 February 2009 Participation at the French-Singaporean symposium at NUS

and IPAL Singapore.

July -October 2008 - Image Processing Stage in Geneva at Université de Geneve

with the MedGIFT laboratory - Collaborator Dr. Henning Müller

March-June 2007 - ONCO-MEDIA project at IPAL (Image Perception Acess and

Language) Laboratory, joint research laboratory in Singapore - CNRS (French National

Research Center), A* Singapore - Institute for Infocomm Research, NUS (National

University of Singapore) and UJF (Joseph Fourrier University) France - Supervisor Dr.

Daniel RACOCEANU(UFC), collaborator Dr. Wee Kheng LEOW (NUS)

March - September 2006 - IPAL (Image Perception Acess and Language) Labora-

tory, joint research laboratory in Singapore - CNRS (French National Research Center),

A* Singapore - Institute for Infocomm Research, NUS (National University of Singapore)

and UJF (Joseph Fourrier University) France - 21 Heng Mui Keng Terrace, Singapore -

Supervisor Dr. Daniel RACOCEANU

B.6 Scholarship

June 2007-December 2009 Young Doctors Scholarship TD (Tineri Doctoranzi) 46/2008

from the Romanian Research and Learning Ministry.





Appendix C

DICOM Header Example �le

This Appendix contains an example of several tags used in our system from the DICOM

header �les. These �les are more complex and contain more tags, but we extract just the

ones presented here.

Title: 21599424

Width: 201.25 mm (448)

Height: 230.00 mm (512)

Resolution: 2.226 pixels per mm

ID: -2

Coordinate origin: 0,0

Bits per pixel: 16 (unsigned)

Display range: 0 - 754

No Threshold
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code Information

0002,0003
Media Storage SOP Inst UID:

1.3.12.2.1107.5.99.2.2716.30000008042402440731200014325
0008,1030 Study Description: head�SGH Brain
0008,103E Series Description: t2_tse_DTI_overlay_highRes

... ...
0010,0010 Patient's Name: 001
0010,0020 Patient ID: 001
0010,0030 Patient's Birth Date: 19411122
0010,0040 Patient's Sex: M
0010,1010 Patient's Age: 064Y

... ...
0018,0023 MR Acquisition Type: 2D
0018,0024 Sequence Name: *tse2d1_13
0018,0025 Angio Flag: N
0018,0050 Slice Thickness: 4
0018,0080 Repetition Time: 5700
0018,0081 Echo Time: 89
0018,0083 Number of Averages: 3
0018,0084 Imaging Frequency: 63.673778
0018,0085 Imaged Nucleus: 1H
0018,0086 Echo Numbers(s): 0
0018,0087 Magnetic Field Strength: 1.4939999580383
0018,0088 Spacing Between Slices: 4

... ...
0020,0013 Image Number: 10

0020,0032
Image Position (Patient):

-121.20970194079 -122.75359890362 -9.4565671015186

0020,0037
Image Orientation (Patient):

0.99817062741895 -0.0175064983057 0.05786986327205
0.02265170415277 0.99573051228909 -0.0894854580112

Table C.1: Example of DICOM header tags
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Hoehn & Yahr classi�cation
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Stage Symptoms

HY-I 1. Signs and symptoms on one side only
2. Symptoms mild
3. Symptoms inconvenient but not disabling
4. Usually presents with tremor of one limb
5. Friends have noticed changes in posture, locomotion and facial expression

HY-II 1. Symptoms are bilateral
2. Minimal disability
3. Posture and gait a�ected

HY-III 1. Signi�cant slowing of body movements
2. Early impairment of equilibrium on walking or standing
3. Generalized dysfunction that is moderately severe

HY-IV 1. Severe symptoms
2. Can still walk to a limited extent
3. Rigidity and bradykinesia
4. No longer able to live alone
5. Tremor may be less than earlier stages

HY-V 1. Cachectic stage
2. Invalidism complete
3. Cannot stand or walk
4. Requires constant nursing care

Table D.1: Hoehn and Yahr Staging of Parkinson's Disease [Goetz 2004]
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