

Thesis Defense

Graph-based Mathematical Morphology for the Characterization of the Spatial Organization of Histological Structures in High-Content Images: Application to Tumor Microenvironment in Breast Cancer

Bassem Ben Cheikh

Ph.D Supervisor: Daniel RACOCEANU

September 26th, 2017

bassem.bencheikh@lib.upmc.fr

Glass slide

Classical Histopathology

- Diagnosis
- Disease detection
- Interpretation

Digital Histopathology

- Annotation
- Automatic analysis
- Storage
- Sharing

[1] FDA Press Announcements. "FDA allows marketing of first whole slide imaging system for digital pathology April 12", (2017)

Breast Cancer Histopathology

Ductal carcinoma in situ - 13%

Invasive lobular carcinoma - 5%

Tubular carcinoma - 4%

Medullary carcinoma - 3%

more subtypes: Cribriform carcinoma, Mucinous carcinoma, Papillary carcinoma, Micropapillary carcinoma, Apocrine carcinoma, Metaplastic carcinomas, Inflammatory carcinoma, etc...

55% of breast tumors <u>do not have</u> the "specific differentiating features" *a.k.a. Invasive carcinoma of no special type (NST)*

Quantitative evaluation of tissue New tissue-derived parameters

Tumor patterns: Density, Size, Shape, Morphology, Sparsity, Relative distance

Tumor Micro-Environment (TME)

[8] DeLisser H.M. and al. "Involvement of endothelial PECAM-1/CD31 in angiogenesis". The American journal of pathology (1997)

- [7] P. Provenzano et al, "Collagen reorganization at the tumor-stromal interface facilitates local invasion", BMC Medicine 2006
- [6] M. Wagner et al, "Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis", Angiogenesis, 2012.
- [5] G.S.K. et al, "Cancer-Associated Fibroblasts Drive the Progression of Metastasis through both Paracrine and Mechanical Pressure on Cancer Tissue", Mol Cr Res, 2012
- [4] W. H. Fridman et al, "The immune contexture in human tumours: impact on clinical outcome", Nature Reviews Cancer, 2012
- [3] Pattabiraman DR. and Weinberg RA. "Tackling the cancer stem cells what challenges do they pose?" Nature reviews Drug disco (2014)

Spatial heterogeneity in cancer ecosystem

Quantitative analysis of spatial heterotypic interactions in TME: Proximity/Adjacency, Surroundedness/Encloseness, Betweenness

Content

Graph Theory:

Seven Bridges of Königsberg (L. Euler in 1736)

Air travel

Social network

Brain function

Celestial phenomena

Histopathology

Histological Sections:

Histological Objects:

Delaunay

Gabriel

2-NNG

Graph types:

- Delaunay = dual(Voronoi)
- MST \subseteq Gabriel \subseteq Delaunay
- Different degrees of connectedness based on geometric rules

Feature extraction:

- Polygon area
- Polygon perimeter
- Polygonal size
- Polygon shape
- Polygon roundness
- Polygon compacity
- Polygon density
- Minimal to maximal side length
- Edge length
- chord length
- Minimum angle
- Maximum angle
- Nearest neighbor distance
- Distance to the k-nearest neighbors
- Nbr. of neighbors ٠ within a disk of radius r
- Weighted compacity
- Divergence from the regular number tree

2) Network Analysis

- Order •
- Size (nbr. of edges) ٠
- Average degree
- Average eccentricity
- Radius (min. ecc.) •
- Diameter (max. ecc.)
- **Clustering coefficient**
- Closeness •
- Nbr. of conn. comp. ٠
- Giant conn. comp. ٠
- Nbr. of isolated nodes •
- Nbr. of nodes with k • neighbors
- ٠ Nbr. of central vertices
- Nbr. of spanning trees
- Betweeness
- Rich club coefficient
- Cyclomatic number ٠
 - Persitence
- Girth ٠
 - Expansion

- Spectral radius
- Fiedler vector
- Cheeger constant
- Algebraic connectivity
- Principal eigenvector ٠
- Nbr. of eigenvalues
- Second largest absolute value of eigenvalues
- Eigen exponent
- Energy
- Lower slope
- Nbr. of eignervalues equal to 1
- Nbr. of eignervalues ٠ equal to 2
- Upper-slope
- Trace
- Eigenmode perimeter
- Eigernmode volume

4) Persistent Homology

Betti numbers

5) Mathematical Morphology

- **Distance transform**
- Granulometry

[10] Raymond E. et al. "Germinal center analysis with the tools of mathematical morphology on graphs". Cytometry (1993)

Limitations:

- Analysis limited to small ROI/image frames
- Imprecision in nuclei detection/manual annotation
- Cells are treated indiscriminately
- High computational cost of some features

Requirements:

- Global analysis: Whole Slide Image
- Heterotypic spatial interactions (TME)
- Nuclei detection & classification
- More holistic approaches for feature extraction

2) Spatial Point Analysis using Mathematical Morphology

Graph reconstruction:

Delaunay graph:

→ High degree of connectedness→ Distant points may be connected

 α -Shape filtering: sculpting Delaunay graph

- → High degree of connectedness
- → Distant points may be related

2) Spatial Point Analysis using Mathematical Morphology

Mathematical Morphology on Graphs:

$$\forall v \in V,$$

- $\varepsilon_n(G)(v) = \min\{G(v), d_E(u, v) \le n\}$
- $\delta_n(G)(v) = \max\{G(v), d_E(u, v) \le n\}$
- $\gamma_n(G) = \delta_n \circ \varepsilon_n(G)$
- $\varphi_n(G) = \varepsilon_n \circ \delta_n(G)$

[11] Luc Vincent, "Graphs and Mathematical Morphology", Signal Processing, 1989.

2) Spatial Point Analysis using Mathematical Morphology

Mathematical Morphology on Graphs:

Data:

- 55 WSIs (breast cancer)
- Hematoxylin-Eosin-Saffron (HES),
- Aperio ScanScope CS (20X objective)
- Resolution: $0.5 \, \mu m/pixel$.

Framework:

HES image tile (1024×1024)

Preprocessing: color normalization

Reinhard:

$$I_{norm}^{(i)} = (I_{source}^{(i)} - \mu_{source}^{(i)}) \frac{\sigma_{target}^{(i)}}{\sigma_{source}^{(i)}} + \mu_{target}^{(i)} , \ i \in \{L, a, b\}$$

Reference image

Under-stained image

Normalized image

[12] Reinhard E. et al. "Color transfer between images". IEEE Computer graphics and applications (2001)

Preprocessing: superpixel segmentation

Simple Linear Iterative Clustering (SLIC):

- number of superpixels: 3500
- compact factor: 35

Nuclei detection: color deconvolution

HES

Separation of histochemical staining

$$\begin{bmatrix} H_x \\ E_x \\ DAB_x \end{bmatrix} = OD^{-1} \times \begin{bmatrix} -log(\frac{R_x+1}{256}) \\ -log(\frac{G_x+1}{256}) \\ -log(\frac{B_x+1}{256}) \end{bmatrix}$$

$$OD = \begin{bmatrix} 0.65 & 0.70 & 0.29 \\ 0.07 & 0.99 & 0.11 \\ 0.27 & 0.57 & 0.78 \end{bmatrix} \stackrel{\blacklozenge}{\bullet} \begin{array}{l} \mathsf{H} \\ \bullet \\ \mathsf{E} \\ \bullet \\ \mathsf{DAB} \end{array}$$

Optical density matrix

Eosin (E)

Nuclei detection: superpixel selection

HES

Haematoxylin (H)

 $Open_{R_d}(H > T_h) \longleftarrow R_d?; T_h?$

SLIC

 $Rec(Open_{R_d}(H > T_h), SLIC)$

Nuclei detection: superpixel selection

Dataset [14]

Ground Truth

Superpixel Ground Truth

512 images (color normalization)

17 294 nuclei ⇒ 14 830 (+) superpixels
 71 191 (−) superpixels

within the validation ROIs

23

 \Rightarrow $R_d = 1$ and $T_h = 0.6$

F-score	Precision	on Recall Specificity		Accuracy	
0.60729	0.46406	0.87843 0.7971		0.81065	
(50% training 50% testing) 0.8449 [1					

[15] Xu J. et al. "Stacked sparse auto-encoder (SSAE) for nuclei detection on breast cancer histopathology images". IEEE trans. on medical imaging (2016)

Nuclei classification:

Fibroblasts

- 17 WSI
- 2533 regions \Rightarrow 1005 (1024×1024) images

Cell type	Nbr. of detected nuclei within the annotated areas		
Cancerous	77676		
Immune cell	31037		
Fibroblast	3412		
Total	112125		

Nuclei classification: feature extraction

➔ 337 features per nucleus

Nuclei classification: Random Forest

Average over 10-fold cross validation

Accuracy _M	Precision _M	Recall_M	Specificity $_M$	F_1 -score _M
0.9784	0.9383	0.8745	0.9737	0.9053

Confusion Matrix		Predicted class				
		Cancer cells	Immune cells	Fibroblasts		
lass	Cancer cells	68858 (98.50%)	901 (1.29%)	149 (0.21%)		
ual c	Immune cells	1087 (3.89%)	26705 (95.60%)	142 (0.51%)		
Acti	Fibroblasts	771 (25.11%)	187 (6.09%)	2113 (68.80%)		

Collagen segmentation:

HES

 I_{RR}

 $Rec(Open_2(I_{RR} > 0.5), SLIC)$

$$I_{RR} = \frac{R}{1 + G + B + \frac{(G - B)^2}{1 + G + B} + R}$$

Qualitative Evaluation

Adipose tissue segmentation:

HES

HES>220

*Rec(Open*₁₀(HES>220), *SLIC*)

Qualitative Evaluation

Expanse:

Expanse function:

$$\Sigma(G_X) = \frac{1}{N+1} \sum_{n=0}^N \Omega \circ \varphi_n(G_X)$$

N = 5

Expanse:

Expanse function:

$$\Sigma(G_X) = \frac{1}{N+1} \sum_{n=0}^N \Omega \circ \varphi_n(G_X)$$

Expanse:

Sparsity:

Immune cell aggregates
 Envelope immune cell aggregates

Cancer cells

- highly enclosed by immune cells
- surrounded by immune cells
- between distant immune cell aggregates

- free from immune cells

Sparsity function:

$$\Gamma(G_X) = \frac{1}{N+1} \sum_{n=0}^N \zeta \circ \gamma_n(G_X)$$

$$N = 5$$

Relative distance:

Pimmune cell aggregates

- Cancer cells distant from immune cells

- Cancer cells close to immune cells

Average distance function:

$$\Psi(G_X) = \frac{1}{N+1} \sum_{n=0}^N D \circ \gamma_n(G_X)$$

N = 5

Interactions:

Interactions:

Interactions:

Overall quality of the PCA :

Predicted Residual Sum of Squares:

 $\mathsf{PRESS}_{\mathsf{M}=3} = \left\| X - \tilde{X}^{[M]} \right\|$

X : principal component coefficients

M : nbr. of components

Leave-one-out cross validation

Outcome:

- $\begin{array}{l} \mbox{Tumor}\\ \mbox{cell} \end{array} \left\{ \begin{array}{l} \mbox{ \bullet } & \mbox{Density of tumor pattern} \\ \mbox{ \bullet } & \mbox{Encloseness by TME_X} \\ \mbox{ \bullet } & \mbox{Relative distance to TME_X} \end{array} \right. \ \ X \in \{\mbox{immune cells, collagen, adipose tissue}\} \end{array}$

Advantages:

- Objective estimation of tumor pattern density (frame size)
- Estimation of tumor pattern size (connected component labeling)
- Robustness to noise (node identification errors)
- Low computational cost (WSI)

Limitations:

- Unsupervised learning (unlabeled data)
- Qualitative evaluation / prospective analysis

5) Simulation

Tumor Patterns:

 $\mathcal{N}_n(\mu,\sigma)$: n random values generated from a normal distribution

 $\mathcal{U}_n(a,b)$: n random values generated from a discrete uniform distribution

5) Simulation

Tumor Micro-Environment:

 $n_L \times \lambda_i$

immune cells

- Distance map (k = 10)
- *k*: number of layers
- Weight coefficients: $\lambda_i = \frac{i^{-\alpha}}{\sum_{i=1}^k i^{-\alpha}}$
- *n*_L: desired number of immune cells
- $\alpha > 0$: immune cells close to tumor

 $\alpha = 420$

5) <u>Simulation</u>

Synthetic data

(a)

(c)

(d)

 Provide a state
 Image: State

6) Perspectives

Graph-based Mathematical Morphology:

- Significance: different spatial point-set configurations
- **Comparison:** SSA / network analysis / spectral analysis / spatial statistics
- **Effectiveness:** stability of morphological functions *vs* noise
- Variation: different graphs / linking rules / parameters
- **Exploration:** new morphological functions / spatial aspects
- Adaptation: Spatial Point Pattern Analysis (GIS, astronomy, histopathology,...)

Tumor Heterogeneity:

- Entities: TME, IHC (+/-), FISH
- **Implication:** clinical parameters, cancer subtypes, gene expression
- **Comparison:** medical imaging parameters (US, Elastography,...)
- Evolution: tumor growth (culture / xenograft), 3D/4D
- Anisotropy: Collagen orientation (TACS)

Thanks For Your Attention

September 26th, 2017

bassem.bencheikh@lib.upmc.fr

References

[1] FDA Press Announcements. "FDA allows marketing of first whole slide imaging system for digital pathology April 12", (2017)

[2] Sinn HP et al. "A brief overview of the WHO classification of breast tumors". Breast Care 8 (2013)

[3] Pattabiraman DR. and Weinberg RA. "Tackling the cancer stem cells - what challenges do they pose?" Nature reviews Drug disco (2014)

[4] W. H. Fridman et al, "The immune contexture in human tumours: impact on clinical outcome", Nature Reviews Cancer, 2012

[5] G.S.K. et al, "Cancer-Associated Fibroblasts Drive the Progression of Metastasis through both Paracrine and Mechanical Pressure on Cancer Tissue", Mol Cr Res, 2012

[6] M. Wagner et al, "Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis", Angiogenesis, 2012.

[7] P. Provenzano et al, "Collagen reorganization at the tumor-stromal interface facilitates local invasion", BMC Medicine 2006

- [8] DeLisser H.M. and al. "Involvement of endothelial PECAM-1/CD31 in angiogenesis". The American journal of pathology (1997)
- [9] Images from: University of British Columbia Slide Box
- [10] Raymond E. et al. "Germinal center analysis with the tools of mathematical morphology on graphs". Cytometry (1993)
- [11] Luc Vincent, "Graphs and Mathematical Morphology", Signal Processing, 1989.
- [12] Reinhard E. et al. "Color transfer between images". IEEE Computer graphics and applications (2001)

[13] Achanta R. et al. "SLIC Superpixels". EPFL Technical Report no. 149300 (2010)

[14] Ruifrok A.C. et al. "Quantification of histochemical staining by color deconvolution". In: Analytical and quantitative cytology and histology (2001)

[15] Xu J. et al. "Stacked sparse auto-encoder (SSAE) for nuclei detection on breast cancer histopathology images". IEEE trans. on medical imaging (2016)

 $D(G_X) * G_Y$

 $\Gamma(G_X) * G_Y$

• X = immune cells • Y = cancer cells

	ROI area	CCN	ICN	FCN	ATN
ROI area	1.0000	0.8893	0.4896	0.7719	0.4171
CCN	0.8893	1.0000	0.3116	0.5726	0.2684
ICN	0.4896	0.3116	1.0000	0.1966	0.1047
FCN	0.7719	0.5726	0.1966	1.0000	0.2487
ATN	0.4171	0.2684	0.1047	0.2487	1.0000

	ROI area	% CCN	% ICN	% FCN	% ATN	ICN/CCN	FCN/CCN	ATN/CCN
ROI area	1.0000	0.4815	-0.1443	-0.3043	-0.2178	-0.3024	-0.3127	-0.2703
% CCN	0.4815	1.0000	-0.2767	-0.6003	-0.5036	-0.6746	-0.7359	-0.5728
% ICN	-0.1443	-0.2767	1.0000	-0.1699	-0.0258	0.8135	-0.0442	0.0166
% FCN	-0.3043	-0.6003	-0.1699	1.0000	-0.2466	0.1303	0.8654	-0.0750
% ATN	-0.2178	-0.5036	-0.0258	-0.2466	1.0000	0.2825	0.0225	0.8676
ICN/CCN	-0.3024	-0.6746	0.8135	0.1303	0.2825	1.0000	0.3577	0.4115
FCN/CCN	-0.3127	-0.7359	-0.0442	0.8654	0.0225	0.3577	1.0000	0.2222
ATN/CCN	-0.2703	-0.5728	0.0166	-0.0750	0.8676	0.4115	0.2222	1.0000

□ Spatial heterogeneity of immune cells:

- Relative abundance
 - Spatial proximity
 - Surroundedness

□ Heterogeneity of the spatial organization of collagen fibers:

- Orientation
 - Density
- Spatial proximity
- Surroundedness
 - Stretchiness

Example of spatial heterogeneity of adipose tissue

□ A model of collagen spatial arrangement:

- Reshaping (parameter γ)
- Distance map
- Quantization (parameter k)
- Dilation (parameter **R**)

Morphological of deformations of tumor patterns define various distance maps, which are quantized.

stretchiness

{1, 50,3**5**0}

density and spatial proximity

□ A model of collagen spatial arrangement:

- Reshaping (parameter γ)
- Distance map
- Quantization (parameter k)
- Dilation (parameter **R**)

Morphological of deformations of tumor patterns define various distance maps, which are quantized.

Orientation relative to tumor

