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Summary

This thesis is dedicated to a number of original methods for the incorporation of prior-

knowledge into Support Vector Methods (SVM) based on modifications of the perva-

sively used Radial Basis Function (RBF) kernel. The methods proposed in this thesis

are collectively referred to as the knowledge-enhanced RBF (KE-RBF) framework.

SVMs are a class of state-of-the-art supervised learning algorithm implementing the

structural risk minimization principle first proposed by the mathematician Vladimir N.

Vapnik. In combination with the general purpose RBF kernel, it has been applied to

successfully solve many complex, real-life problems. However, the required amount of

training data can be very high making the SVM option unavailable in many practical

situations.

Often, prior-knowledge on the task is available and could be used together with

labeled data for training. This requires specific methods to be developed since by its

design, the SVM takes only labeled data points as input.

The KE-RBF framework is a set of original kernel methods for the incorporation of

prior-knowledge into SVMs. It comprises 3 new kernels (the ξRBF, pRBF and gRBF

kernels) based on transformations of the RBF kernel widely used in machine learning.

It gives systematic methods for the incorporation of properties specific to the problem

while retaining the versatility making the popularity of the RBF kernel.

The KE-RBF kernels allow for the incorporation of a wide array of commonly avail-

able problem-specific prior-knowledge including global properties such as monotonicity,

pseudo-periodicity or characteristic correlation patterns and semi-global properties rep-

resented by unlabelled and labelled regions.

KE-RBF kernels are highly usable in practice and pave the way for several interesting

x



new possibilities with SVMs such as learning with very small or strongly biased datasets

as shown in a benchmark based on 5 different applications using real-world and synthetic

data from a wide variety of domains of application.

We show that the KE-RBF framework is highly usable in practice, has the potential

to largely improve learning performances over the RBF kernel, and sharply reduces the

requirements in training data.

In particular, the good results obtained with very small or strongly biased training

sets pave the way for several interesting new possibilities of application of SVMs beyond

their standard limits.

Finally, we propose a valorization of our contribution through a computer-aided

breast cancer grading application able to satisfy the actual operational requirements of

the pathologists. This application demonstrates how the KE-RBF framework can work

as one of the numerous components or a complex, real-life engineering project an proves

the operational readiness of the framework.
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Chapter 1

Introduction

1.1 Motivation

The study of biopsy micrographs from surgically extracted breast tumors is currently

the gold standard for the assessment of breast cancer and is performed routinely in daily

clinical practice. This task known as Breast Cancer Grading (BCG) provides essential

prognostic and management information for the pathology. Therefore, a good grading

has a great impact on the quality of the medical care and the reduction of human

and financial costs due to misdiagnosis. Unfortunately, BCG is a highly qualified job

requiring a large amount of work from experienced pathologists. Moreover, the tedious

nature of the task makes it prone to frequent errors.

Many specialized and repetitive tasks such as BCG could greatly benefit from a

partial or full automatization. Nevertheless, they often require the knowledge and expe-

rience of highly-qualified specialists which is not simple to model. Therefore, powerful

methods able to extract and model the complex know-how of specialists accomplishing

complex tasks are necessary.

Support Vector Machines (SVM) with their numerous variants for classification and

regression tasks are state-of-the-art machine learning algorithms which can be used for

this purpose. Some of their key features are the absence of local optima, the possibility

to control over-fitting and the use of kernels. In combination with the nonlinear Radial

Basis Function (RBF) kernel, they provide a powerful and versatile learning tool often

used as a default choice in many real-world applications.

SVMs are supervised statistical learning algorithms: they work by extracting the

1



knowledge about the task implicitly contained in a training set of annotated samples.

Therefore, as long as training data is available in sufficient quantity and quality, the

SVM+RBF combination can be applied as a general-purpose learning black-box on

the data and often produce good results. On complex problems, such methods can

however lead to steep requirements in training data. Unfortunately, countless reasons

(cost issues, time constraints, ethical reasons, etc. . . ) make training data for real-world

problems hard to obtain.

Meanwhile, real-world problems are seldom black-boxes as some general or specific

knowledge about the task is often available. In some cases, specific information on the

category or the range of the parameters may be available: e.g. “a non-smoking person

less than 20 years of age is at very low risk of developing breast cancer”. In other cases,

specific patterns may be known: e.g. “the breaking distance of a car is quadratically

correlated to its velocity”. Although insufficient to fully characterize a particular task,

such information can provide a very substantial help in modeling the problem. Thus,

it seems natural to rely upon such additional prior-knowledge when training data is

insufficient.

In most of the cases, the “learning-by-examples” paradigm embodied by supervised

learning is not a natural analogy of the way concepts are defined in real life. For

instance, histopathology textbooks describe a specific disease with text and a small

amount of micrographs exemplifying typical cases rather than an exhaustive collection

of micrographs covering possible positive and negative cases. Therefore, problems for

which a limited amount of examples is available with some formalized knowledge are

arguably more common in real-life than tasks for which examples are unlimited but

nothing else in particular is known.

In this thesis, we propose the Knowledge-Enhanced RBF (KE-RBF) kernel frame-

work, a family of kernel methods for the incorporation of prior-knowledge into SVMs.

Based upon adaptations of the standard RBF kernel according to the prior-knowledge,

they aim at incorporating properties highly characteristic of particular problems while

preserving the versatility making the popularity of the RBF kernels.

The framework consists of three distinct types of kernels: ξRBF kernels, pRBF

kernels and gRBF kernels. Our original KE-RBF framework allows for the incorpora-
2



tion of a wide array of commonly available problem-specific prior-knowledge including

global properties such as monotonicity, pseudo-periodicity or characteristic correlation

patterns; and semi-global properties represented by unlabeled and labeled regions.

The KE-RBF framework ally effectiveness with ease of use, and pave the way for

several interesting new possibilities with SVMs such as learning with very small or

strongly biased datasets. Accordingly, our work significantly contributes towards a shift

of paradigm for a more practical use of SVMs: from an often unrealistic situation where

lots of training data are required to a more practical situation where a limited amount

of data in addition to some problem-specific advice is available.

1.2 Objectives

This thesis has three objectives: a didactic goal, a research goal and a valorization goal.

First, we will provide a didactic tutorial to the SVM from a statistical standpoint.

Instead of describing it as a geometrical construction which is not able per se to justify

its good average performances, the SVM will be presented as the implementation of

the structual risk minimization principle, a theoretically validated strategy originally

proposed by the Russian mathematician Valdimir N. Vapnik and able to achieve a

specific statistical goal. The tutorial is intended for anybody who is not familiar with

the statistical aspect behind the SVM and is interested in “why” the SVM works rather

than just “how” it works.

The required specialized notions will be introduced in an concise and organized

fashion including: the positive-definite kernels and the Moore-Aronszajn theorem, the

reproducing kernel Hilbert spaces and the representer theorem, the use of strong duality

in convex optimization, and the computation of statistical learning bounds in supervised

learning. Only a basic mathematical background is pre-required from the reader.

A particular emphasis will be put upon the importance of choosing the right kernels

and their associated reproducing kernel Hilbert space.

Then, sustained research work will be conducted on the central topic of this thesis:

the incorporation of prior-knowledge into SVMs. Following a review of the current state-
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of-the art identifying gaps and promising leads, we will present the KE-RBF framework,

our original kernel-based solution to the problem.

The KE-RBF framework, based on adaptations of the standard RBF kernel, can be

subdivided into 3 families of kernel methods: ξRBF kernels, pRBF kernels and gRBF

kernels. Together, they enable the incorporation of a wide range of prior-knowledge spe-

cific to the task including global properties such as monotonicity, pseudo-periodicity or

characteristic correlation patterns; and semi-global properties represented by unlabeled

and labeled regions of the feature space.

Following their theoretical description and validation, a systematic empirical evalu-

ation of the framework will be conducted on several applications using real-world and

synthetic data covering fields as diverse as meteorology, oncology, signal processing and

zootomy. We aim to show that the methods are easy to use in practice, have the po-

tential to largely improve learning performances and are able to sharply reduces the

requirements in training data by making use of the prior-knowledge. In particular, we

will demonstrate that they enable learning with very small or strongly biased training

sets significantly broadening the field of application of SVMs.

Finally, we will propose a valorization of our contribution through an application

to BCG aimed at satisfying actual operational needs of pathologists. The BCG system

is a central component of the MICO1 project funded by the Agence Nationale pour la

Recherche (France). It involves industrial partners and pathologists from a university

hospital. Therefore, a strong emphasis is put on the validity of the approach from a

medical standpoint and its operational viability in a real clinical environment

Our application will be a complete approach to BCG including a robust detection

and extraction of histological structures from complex images combining a wide range

of information including color, texture, scale and geometry in a machine learning frame-

work; a local frame-level BCG using the gRBF kernel to combine annotated medical

data and formalized medical knowledge; and an efficient strategy based on dynamic

sampling and computational geometry tools to explore large images for the grading of

entire slides within an operationally acceptable timeframe.

1http://ipal.cnrs.fr/project/mico
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1.3 Outline

This thesis has the following structure.

In Chapter 2, we propose a statistical introduction to SVMs as an implementation

of the structural risk minimization principle rather than the more common place geo-

metrical approach.

In Chapter 3, we provide a structured and critical review of the state-of-the-art

in prior-knowledge incorporation methods into SVMs. We identify the strengths and

weaknesses of the respective methods in-line with the objective of dealing with small

training sets and propose promising leads.

The KE-RBF kernel framework which constitutes the original contribution of this

thesis is presented in Chapter 4. It comprises 3 new kernels (the ξRBF, pRBF and

gRBF kernels) based on transformations of the RBF kernel pervasively used in machine

learning.

Then, the KE-RBF kernels are validated in an extensive and detailed performance

evaluation based on 5 different applications in Chapter 5.

Finally, our BCG system which includes an application of KE-RBF kernels is pre-

sented in Chapter 6.
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Chapter 2

A Statistical Introduction to

Support Vector Methods

2.1 Introduction

In this chapter, we propose a comprehensive tutorial on support vector methods (SVM),

a class of state-of-the-art supervised learning algorithms which can be applied both to

classification and regression tasks.

SVMs are often presented from a geometrical standpoint as the construction of a

hyperplane in a real Hilbert space. The hyperplane is used to separate classes or as

a regression model. An excellent tutorial adopting this perspective is available from

Burges [4]. Although this geometrical approach fully describes the SVM, it does not

provide a mathematical explanation for the good statistical performances of the SVM.

In fact, the SVM can be justified as the implementation of a statistically sound

strategy known as the structural risk minimization (SRM) principle. In the present

tutorial, we make the choice to follow this statistical approach by presenting SVMs as

a natural implementation of the SRM principle.

Basic notions in differential analysis, linear algebra, Hilbertian geometry and proba-

bility theory are prerequired from the reader. More specialized notions are progressively

introduced throughout this tutorial.
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2.1.1 A brief History of the SVM

If the SRM principle was established by Vapnik and Chervonenkis as early as 1974 [83], it

is only much later that the first SVM for classification tasks was poposed by Cortes and

Vapnik [6] and recognized as an interesting alternative to the state-of-the-art statistical

learning algorithms such as neural networks (NN). A version for scalar regression was

also proposed the same year by Vapnik [81].

Although the SRM principle itself was anterior to the SVM, rigorous statistical

learning bounds for the classification and regression cases were only proposed in 2000

by Shawe-Taylor and Cristianini [71] for the soft-margin SVM.

Today, Vapnik’s SVM and its many variations are widely considered among the

best supervised learning algorithms du to their learning power, generalizability and

versatility.

2.1.2 Outline

First, an introduction to the theory of positive-definite kernels is given in Section 2.2.

The notions convered in this presentation are the kernel trick, reproducing kernels and

the representer theorem.

In Section 2.3, a few notions in convex optimization theory related to Lagrangians

and the primal-dual reformulation of problems are presented and will be subsequently

used to derive the SVM algorithm from the SRM principle.

The SRM principle itself is presented and theorecially justified in Section 2.4. The

particular formulation of the SRM presented here is based on Rademacher’s complexity

theory.

Section 2.5.1 is dedicated to support vector classifiers (SVC), i.e. SVMs for classi-

fication tasks, constructed as an implementation of the SRM principle. Support vector

regressions (SVR) are then presented in section 2.5.2 as an adaptation of SVCs to re-

gression problems.

The link with the better-known geometrical interpretation is made in Section 2.5.3

and common variants of SVMs are presented in Section 2.5.4.
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2.2 Kernel theory

Kernels are a simple mathematical notion with major applications which are both the-

oretical in the field of Hilbertian analysis and practical in computer science.

The positive-definite (PD) kernels described in Section 2.2.1 are of a particular im-

portance as they can be used to manipulate data embedded into potentially complex

Hilbert spaces (Section 2.2.3) through inner product evaluations.

PD kernels have very significant applications in computer science and statistical

machine learning in particular for two major reasons. First, they enable a simple al-

gorithmic strategy, known as the kernel trick (Section 2.2.2), which can tremendously

improve the usefulness of many linear algorithms. Second, they allow for the reformu-

lation of optimization problems into an efficiently solvable form, a result known as the

representer theorem and presented in Section 2.2.4.

2.2.1 Positive definite kernels

This section defines a few notions related to PD kernels together with examples, and

introduces a central result known as the Moore-Aronszajn theorem.

Definition 2.2.1. Positive definite (PD) kernel

Let X be a non-empty set. A positive definite kernel over X is a funtion K : X×X →

R such that:

1. K is symmetric.

2. ∀N ∈ N, ∀(x1, x2, . . . , xN ) ∈ XN , ∀(v1, v2, . . . , vN ) ∈ RN :

N∑
i=1

N∑
j=1

vivjK(xi, xj) ≥ 0 (2.1)

Definition 2.2.2. Strictly PD kernel

Let K be a PD kernel over X .

If ∀N ∈ N, ∀(x1, x2, . . . , xN ) ∈ XN pairwise distinct, ∀(v1, v2, . . . , vN ) ∈ RN :

N∑
i=1

N∑
j=1

vivjK(xi, xj) = 0 =⇒ ∀i ∈ J1, NK, vi = 0 (2.2)
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then, we say that K is strictly positive.

Definition 2.2.3. Gram matrix of a PD kernel

Let K be a PD kernel over X . The Gram matrix of K with respect to a finite subset

A = (a1, a2, . . . , aN ) of X is the N -by-N symmetric matrix denoted KA and defined as:

KA = (K(ai, aj))i=1...N,j=1...N . (2.3)

By extension, the Gram matrix ofK with respect to two finite subsetsA = (a1, a2, . . . , aN )

and B = (b1, b2, . . . , bM ) of X is the N -by-M symmetric matrix denoted KA,B and de-

fined as:

KA,B = (K(ai, bj))i=1...N,j=1...M . (2.4)

Remark 2.2.4. Equation (2.1) is equivalent to the Gram matrix KA being positive semi-

definite for any finite subset A ⊂ X and equation (2.2) is equivalent to the Gram matrix

KA being positive definite for any finite subset A ⊂ X . Attention should be paid at

the fact that the notions of positive definiteness and positive semi-definiteness do not

coincide for kernels and matrices!

The linear kernel is one of the most simple non-trivial PD kernel.

Example 2.2.5. The linear kernel

Klin(x, y) = 〈x, y〉 is a PD kernel over Rd. Indeed, ∀N ∈ N, (x1, x2, . . . , xN ) ∈ (Rd)N ,

(v1, v2, . . . , vN ) ∈ RN :

N∑
i=1

N∑
j=1

vivj〈xi, xj〉

= 〈
N∑
i=1

vixi,

N∑
j=1

vjxj〉 by bilinearity of the inner product

= ‖
N∑
i=1

vixi‖2 ≥ 0

The linear kernel is not strictly PD. Taking N = 2, x1 6= 0, x2 = −x1 and v1 = v2 = 1

provides a simple counter example.

A less obvious PD kernel which is commonly used in machine learning is called the
9



Gaussian radial basis function (RBF) kernel.

Example 2.2.6. The Gaussian radial basis function kernel

The Gaussian RBF kernel (or simply RBF kernel) with parameter γ ≥ 0 defined by:

Krbf : (Rd)2 → R

(x, y) 7→ exp(−γ‖x− y‖2)

is a strictly PD kernel.

Proving the positive-definiteness of the Gaussian RBF kernel is not difficult but

involves several steps requiring background notions in mathematical analysis (such as

power series expansions) wich are not directly relevant to our prupose. The following is

a sketch of the proof.

First, we introduce an auxiliary kernel function:

K1(x, y) = exp(2γ〈x, y〉) (2.5)

Its power series expansion is:

K1(x, y) =
∑

i=1,...,∞

(2γ〈x, y〉)i

i!
(2.6)

which is PD as a converging infinite sum of PD kernels (sums and products of PD kernels

are PD).

Then we introduce another auxiliary kernel function:

K2(x, y) = f(x)f(y) (2.7)

which is trivially PD regardless of the expression of f . Then we pose:

f(x) = exp(−γ‖x‖2) (2.8)

The proof is completed by noticing that Krbf = K1 ×K2 is PD as a product of PD

kernels.

Any PD kernel can be expressed in the following fashion.
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Example 2.2.7. The general case

Let (H, 〈., .〉H) be a Hilbert space and Φ : X → H. Then,

K : X 2 → R

(x, y) 7→ 〈Φ(x),Φ(y)〉H

is a PD kernel.

This result can be proved with a straightforward adaptation of the proof in example

2.2.5.

Reciprocically, such a Hilbert space H and an application Φ : X → H exist for any

PD kernel over X . This major result is known as the Moore-Aronszajn theorem.

Theorem 2.2.8. The Moore-Aronszajn theorem

The two following assertions are equivalent:

1. K is a PD kernel on X .

2. There is a Hilbert space (H, 〈., .〉H) and a mapping Φ : X → H such that:

∀x, y ∈ X , K(x, y) = 〈Φ(x),Φ(y)〉H (2.9)

The reverse implication from assertion 2 to assertion 1 is easy as pointed out in

example 2.2.7. Proving the non-trivial direct implication requires to have an insight on

the nature of the application Φ and the Hilbert space H. Therefore, the full proof of the

theorem will be postponed to section 2.2.3 and the result is admitted for the moment.

2.2.2 Kernel methods and the kernel trick

A widespread utilization of PD kernels with countless practical applications is known as

the kernel trick.

A large number of algorithms processing finite-dimensional vectors can be expressed

in terms of pairwise inner products of the data. This class of algorithms requiring only

Gram matrices as inputs is called kernel methods.

Besides, we established in theorem 2.2.8 (Moore-Aronszajn) that a PD kernel K :

X 2 → R is quivalent to the inner product in a certain Hilbert space (H, 〈., .〉H). There-
11



fore, by replacing every inner product evaluation by a kernel evaluation, we can effec-

tively apply the algorithm to the data embedded in space H instead of the data in the

original space X .

The kernel trick consists in the substitution of the Gram matrix of inner products in

X by the kernel gram matrix (as defined in definition 2.2.3), which is in fact the Gram

matrix of inner products in H.

One of the most important aspects of the kernel trick is that this transposition of

the problem from X to H is possible without knowing the application Φ : X → H or

without being able to compute it. The objects in H are manipulated implicitely through

evaluations of the kernel function K.

For instance, the canonical distance (i.e. the inner-product distance) in H between

the images Φ(X ) = {Φ(x)|x ∈ X} can be expressed using the kernel function alone.

Theorem 2.2.9. Kernel distance

Let K be a PD kernel over X , (H, 〈., .〉H) be a Hilbert space, and Φ : X → H such

that ∀(x1, x2) ∈ X 2, K(x1, x2) = 〈Φ(x1),Φ(x2)〉H.

Then, for (x1, x2) ∈ X 2:

dK(x1, x2)
def
= ‖Φ(x1)− Φ(x2)‖H =

√
K(x1, x1) +K(x2, x2)− 2K(x1, x2) (2.10)

This restriction of the cannonical distance from H2 to Φ(X )2 is referred to as the kernel

distance.

Proof.

dK(x1, x2)2 def
= ‖Φ(x1)− Φ(x2)‖2H

= 〈Φ(x1)− Φ(x2),Φ(x1)− Φ(x2)〉H by definition

= 〈Φ(x1),Φ(x1)〉H + 〈Φ(x2),Φ(x2)〉H − 2〈Φ(x1),Φ(x2)〉H

by symmetry and bilinearity of the inner product

= K(x1, x1) +K(x2, x2)− 2K(x1, x2)

Remark 2.2.10. Since K is a PD kernel, the existances of the Hilbert space H and the
12



application Φ are guaranteed by theorem 2.2.8 (Moore-Aronszajn).

In fact, a PD kernel induces a pseudometric on X by extension of the canonical

metric on H.

Theorem 2.2.11. Induced pseudometric space

Let K be a PD kernel over X and dK be the corresponding kernel distance. Then,

(X , dK) is a pseudometric space.

Proof. The 4 properties of the definition of a pseudometric must be verified. dK is a

restriction of the cannonical distance inH, thus non-negativity, symmetry and triangular

inequality are given.

Therefore, we only need to verify that for x ∈ X :

dK(x, x) =
√
K(x, x) +K(x, x)− 2K(x, x) =

√
0 = 0

Under what conditions the pseudometric space can be a metric space? This hap-

pens iff the property called “identity of discernibles” is verified. In other words, we

additionally need that for (x, y) ∈ X 2:

dK(x, y) = 0 =⇒ x = y

we will show that this is equivalent to saying that K is strictly positive.

Theorem 2.2.12. Induced metric space

Let K be a strictly PD kernel over X and dK be the corresponding kernel distance.

Then, (X , dK) is a metric space.

Proof. We propose a proof by contradiction.

Let (x, y) ∈ X 2 and dK(x, y) = 0. Therefore, by theorem 2.2.9,

√
K(x, x) +K(y, y)− 2K(x, y) = 0

i.e. K(x, x) +K(y, y)− 2K(x, y) = 0 (2.11)
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Lets now assume x 6= y. Lets pose N = 2, x1 = x, x2 = y, v1 = −1 and v2 = 1.

Since the xi are pairwise distinct, the definition 2.2.2 of strictly PD kernels gives:

N∑
i=1

N∑
j=1

vivjK(xi, xj) = 0 =⇒ ∀i ∈ J1, NK, vi = 0

But given that the right hand side of the implication is false (v1 6= 0 for instance), we

get by contraposition:

N∑
i=1

N∑
j=1

vivjK(xi, xj) 6= 0

i.e. K(x, x) +K(y, y)− 2K(x, y) 6= 0

which contradicts statement (2.11).

The intended benefits of performing this kernel trick are usually one of the following:

• Embedding the initial data into a higher-dimensional (potentially infinite dimen-

sional) feature space involving points without an inverse image in X .

• Obtaining nonlinear versions of linear algorithms.

• Applying vectorial algorithms to non-vectorial data such as strings or graphs.

Below is an example showing a situation when a point in the kernel space does not

have any inverse image.

Example 2.2.13. Barycenter in kernel space

Let S = (x1, x2, . . . , xN ) ∈ XN . The barycenter in H of Φ(S) is defined as:

bary(Φ(S)) =
1

N

N∑
i=1

Φ(xi)
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(a) RBF with γ = 0.5
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(b) RBF with γ = 3
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(c) RBF with γ = 10
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(d) Barycenter in R2

Figure 2.1: For (a), (b) and (c): distance to the barycenter of Φ(S) with S =
{(−0.5, 0.5), (0.5,−0.5)} in the RBF kernel space for different values of the γ parameter. For
(d): distance to the barycenter of S = {(−0.5, 0.5), (0.5,−0.5)} in the standard Euclidean
space R2.
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The squared distance between the image by Φ of x ∈ X and bary(Φ(S)) is:

d2 = ‖Φ(x)− bary(Φ(S))‖2H

= ‖Φ(x)− 1

N

N∑
i=1

Φ(xi)‖2H

= 〈Φ(x)− 1

N

N∑
i=1

Φ(xi),Φ(x)− 1

N

N∑
i=1

Φ(xi)〉H

= 〈Φ(x),Φ(x)〉H −
2

n

N∑
i=1

〈Φ(x),Φ(xi)〉H +
1

N2

N∑
i=1

N∑
j=1

〈Φ(xi),Φ(xj)〉H

by bilinearity of 〈., .〉H

= K(x, x)− 2

N

N∑
i=1

K(x, xi) +
1

N2

N∑
i=1

N∑
j=1

K(xi, xj)

Figures 2.1a, 2.1b and 2.1c show the distance d to bary(Φ(S)) in the BRF kernel

space with: X = R2, S = {(−0.5, 0.5), (0.5,−0.5)} and K = Krbf with different values

of the γ parameter. The distance d remains strictly positive showing that there is no

inverse image of bary(Φ(S)) in R2. We can observe that with a small enough value

of the parameter γ, there is a single point in Φ(R2) minimizing d (i.e. closest to the

barycenter) whereas there are multiple minima when γ gets larger.

For reference, figure 2.1d shows the standard Euclidean distance to the barycentre

of S in R. The barycenter has coordinates bary(S) = (0, 0).

The next example shows how a simple linear classifier can be made nonlinear using

the kernel trick.

Example 2.2.14. Mean cosine classifier

Let S1 ∈ Rn and S2 ∈ Rn be two finite and disjoint sets of points. Given a point

x ∈ X , the mean cosine between x and the points in S1 is:

d1(x) =
1

|S1|
∑
y∈S1

cos(x, y)

=
1

|S1|
∑
y∈S1

〈x, y〉
‖x‖2‖y‖2
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In a similar fashion, the mean cosine between x and the points in S2 is:

d2(x) =
1

|S2|
∑
y∈S2

cos(x, y)

=
1

|S2|
∑
y∈S2

〈x, y〉
‖x‖2‖y‖2

Lets δ be the difference:

δ(x) = d1(x)− d2(x)

The classifier referred to as the “mean cosine classifier” (only for the purpose of this

example) assigns a point x to class 1 if δ(x) ≥ 0 or to class 2 otherwise.

Figure 2.2 illustrates the mean cosine classifier for n = 2 , S1 = {(−0.4, 0.5)} and

S2 = {(0.5,−0.2), (−0.4,−0.7)}. The curve separating the two classes is a straight line.

Incidentally, there is a singularity at (0, 0).

Figure 2.2: Separating curve of the mean cosine classifier.

The mean cosine classifier can be kernelized by simply replacing the inner product

by the kernel function Krbf and using theorem 2.2.9. Figure 2.3 illustrates the version of

the classifier kernelized using the RBF kernel. Unlike previously, the separating surface

is a non-straight curve.

Remark 2.2.15. In the case of the RBF kernel, the mean cosine defined in 2.2.14 is
17



Figure 2.3: Separating curve of the kernelized mean cosine classifier. RBF kernel with
γ = 5.

usually referred to as a kernel density estimation. It is a common way to estimate

the probability density function of a variable. The resulting mean cosine classifier is

therefore a simple Bayesian classifier.

Bhattacharyya’s kernel for probability distributions is an example of kernel on non-

vectorial data.

Example 2.2.16. Bhattacharyya’s kernel for probability distributions

Let P the set of probability distributions over R. Bhattacharyya’s kernel, named

after Bhattacharyy’s affinity between distributions, is defined over P by:

∀(p, p′) ∈ P2, K(p, p′) =

∫
R

√
p
√
p′

Bhattacharyya’s kernel is a PD kernel because it is trivially symmetric and ∀N ∈ N,
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∀(p1, p2, . . . , pN ) ∈ PN , ∀(v1, v2, . . . , vN ) ∈ RN :

N∑
i=1

N∑
j=1

vivjK(pi, pj)

=
N∑
i=1

N∑
j=1

vivj

∫
R

√
pi
√
pj

=

∫
R

N∑
i=1

N∑
j=1

vivj
√
pi
√
pj by linearity of

∫

=

∫
R

(
N∑
i=1

vi
√
pi)

2 by linearity of
∑

≥ 0 because (

N∑
i=1

vi
√
pi)

2 ≥ 0

Remark 2.2.17. Example 2.2.16 generalizes well to probability distributions on arbitrary

Lebesgue measurable spaces. It can also adapt easily to the discrete case.

2.2.3 Reproducing kernel Hilbert spaces

The proof for theorem 2.2.8 (Moore-Aronszajn) in section 2.2.1 is still due. In this

section, additional materials required to complete the proof as-well-as to understand

the nature of the embedding Φ : X → H will be presented.

Definition 2.2.18. Reproducing kernel

Let H ⊂ RX be a vector subspace of real valued functions provided with an inner

product 〈., .〉H (therefore, (H, 〈., .〉H) has a Hilbert space structure). A function K :

X 2 → R is a reproducing kernel of H if the following two conditions hold:

1. ∀x ∈ X ,Kx ∈ H

2. ∀x ∈ X , ∀f ∈ H, f(x) = 〈f,Kx〉H

where Kx is defined for every x ∈ X by:

Kx : X → R

t 7→ K(x, t)

Property 2. is referred to as the reproducing property.
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Definition 2.2.19. Reproducing kernel Hilbert space (RKHS)

A Hilbert space of real valued functions H ⊂ RX is called a RKHS if it admits a

reproducing kernel.

There is actually a strong relationship between PD kernels and reproducing kernels.

Theorem 2.2.20. A PD kernel is a reproducing kernel

Let K : X 2 → R be a PD kernel. Let HK be the real vector space generated (spanned)

by the functions {Kx|x ∈ X}, also written as spanR{Kx}x∈X , and let 〈., .〉HK be defined

on HK ×HK by:

〈
N∑
i=1

αiKxi ,

M∑
j=1

βjKyj 〉HK =

N∑
i=1

M∑
j=1

αiβjK(xi, yj) (2.12)

Then, (HK , 〈., .〉HK ) is a (real) Hibert space and K is a reproducing kernel of the

RKHS HK .

Proof. First, note that HK is a vector subspace of RX and therefore a real vector space.

Moreover, 〈., .〉HK is well defined because it does not depend on a particular expansion

of the terms. Indeed:

〈
N∑
i=1

αiKxi ,
M∑
j=1

βjKyj 〉HK =
N∑
i=1

M∑
j=1

αiβjK(xi, yj)

=
M∑
j=1

βj

N∑
i=1

αiK(xi, yj)

=

M∑
j=1

βj

N∑
i=1

αiKxi(yj) by definition of Kxi

=
M∑
j=1

βj(
N∑
i=1

αiKxi)(yj)

which does not depend of a particular expansion of the left hand side term. The proof

with expansions of the right hand side term is similar.

Then, we prove that (HK , 〈., .〉HK ) is a Hilbert space which requires verifying that

〈., .〉HK is symmetric, bilinear and positive-definite which trivially unfold from the sym-

metry and positive-definiteness of K, and the bilinearity of the sum.

Finally, K is a reproducing kernel of HK because:

• ∀x ∈ X , Kx ∈ HK by definition of HK .
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• Moreover, for f ∈ HK with f =
∑N

i=1 αiKxi and x ∈ X :

〈f,Kx〉HK = 〈
N∑
i=1

αiKxi ,Kx〉HK

=

N∑
i=1

αiK(xi, x) by definition of 〈., .〉HK

=
N∑
i=1

αiKxi(x) by definition of Kxi

= (
N∑
i=1

αiKxi)(x)

= f(x)

Lets now prove the direct implication in the Moore-Aronszajn theorem enounced in

section 2.2.1.

Proof of the Moore-Aronszajn theorem. Let K : X 2 → R be a PD kernel. By theorem

2.2.20, K is the reproducing kernel of a RKHS H. Then for any x ∈ X and y ∈ X :

K(x, y) = 〈Kx,Ky〉H by the reproducing property of K

= 〈Φ(x),Φ(y)〉H

by defining Φ as:

Φ : X → H

x 7→ Kx

The reverse implication was trivially established in example 2.2.7.

Remark 2.2.21. We proved in theorem 2.2.20 that a PD kernel is a reproducing kernel.

In fact, the reciprocal is also true: a reproducing kernel is a PD kernel. In addition,

every RKHS has a unique reproducing kernel and every PD kernel is the reproducing

kernel of a single RKHS. Therefore, we can speak of “the” reproducing kernel of a RKHS

or “the” RKHS of a PD kernel. As a consequence, the relationship between PD kernels
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and RKHS is 1-to-1 and explicit, which implies that the nature of the embedding Φ is

actually known. The interested reader will be able to find the relevant developments in

appendix of this thesis.

In conclusion, a space of functions over X called the RKHS is a possible realization

of the embedding given by the Moore-Aronszajn theorem (into a Hilbert space H in

which the PD kernel is an inner product). This embedding is the result of a mapping

by:

Φ : X → H (2.13)

x 7→ Kx (2.14)

2.2.4 The representer theorem

The representer theorem is a powerful application of the theory of PD kernels. It

allows to express the solution of a class of optimization problems with a (finite) linear

combination of kernel terms.

Theorem 2.2.22. Representer theorem

Let:

• X be a non-empty set

• K : X 2 → R be a PD kernel with RKHS HK .

• S = {x1, . . . , xN} ⊂ X be a finite subset of X

• Ψ : RN+1 → R be a real function of N + 1 variable stricly increasing with respect

to the last variable.

If f̂ is a solution of the optimization problem i.e. :

f̂ = argmin
f∈HK

Ψ(f(x1), . . . , f(xN ), ‖f‖HK ) (2.15)

then f̂ admits a solution of the form:

f̂ =

N∑
i=1

αiKxi (2.16)
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Proof. Let HK,S = spanR{Kxi}xi∈S be the at most N -dimenstional subspace of HK

generated by the Kxi .

Let f̂ be a solution to the optimization problem. HK begin a Hilbert space:

HK = HK,S ⊕H⊥K,S

Therefore:

f̂ = f̂S + f̂S⊥ (2.17)

with f̂S ∈ HK,S and f̂S⊥ ∈ H⊥K,S .

The next step is to prove that f̂S⊥ = 0. For any xi ∈ S:

f̂(xi) = f̂S(xi) + f̂S⊥(xi)

= f̂S(xi) + 〈f̂S⊥ ,Kxi〉HK by the reproducing property of K

= f̂S(xi) + 0 because f̂S⊥ ∈ H⊥K,S and Kxi ∈ HK,S

= f̂S(xi)

Therefore:

∀xi ∈ S, f̂(xi) = f̂S(xi). (2.18)

Moreover, Pythagora’s theorem gives us:

‖f̂‖2HK = ‖f̂S‖2HK + ‖f̂S⊥‖2HK (2.19)

Which implies:

‖f̂‖HK ≥ ‖f̂S‖HK (2.20)
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As a consequence:

Ψ(f̂(x1), . . . , f̂(xn), ‖f̂‖HK )

= Ψ(f̂S(x1), . . . , f̂S(xn), ‖f̂‖HK ) using equation (2.18)

≥ Ψ(f̂S(x1), . . . , f̂S(xn), ‖f̂S‖HK ) using equation (2.20)

Since the monotonicity of Ψ with respect to the last variable is strict, the equality holds

iff ‖f̂‖HK = ‖f̂S‖HK . This implies ‖f̂⊥S ‖HK = 0 and therefore equation (2.19) yields

ˆfS⊥ = 0.

From this and equation (2.17), we obtain f̂ = f̂S i.e. f̂ ∈ HSK .

In practice, a more restrictive form of the representer theorem is often sufficient:

Corollary 2.2.23. Weak representer theorem

Let:

• X be a non-empty set

• K : X 2 → R be a PD kernel with RKHS HK .

• S = {x1, . . . , x+N} ⊂ X be a finite subset of X

• Λ : RN → R be a “loss” function

• λ > 0

• Ω : R→ R be a strictly increasing function

If f̂ is a solution of the optimization problem:

f̂ = argmin
f∈HK

Λ(f(x1), . . . , f(xN )) + λΩ(‖f‖HK ) (2.21)

then f̂ admits a solution of the form:

f̂ =

n∑
i=1

αiKxi (2.22)

Proof. The formula:

Ψ(f(x1), . . . , f(xN ), ‖f‖HK ) = Λ(f(x1), . . . , f(xN )) + λΩ(‖f‖HK )
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defines a function from Rn+1 to R, strictly increasing with respect to the last variable.

From this point, theorem 2.2.22 can be applied.

Remark 2.2.24. In statistical machine learning, the two components Λ and Ω play a

very distinct and specific role. On one hand, the loss function Λ fits the model f to the

training data. On the other hand, the minimization of ‖f‖HK ensures the smoothness

of the solution and thus has a regularization effect. The balance between fitness and

regularity is achieved by setting λ to the appropriate value, usually by tuning.

Most importantly, the expression of the solution given by the representer theorem

lies in a subspace of finite dimention. This has huge practical consequences as it allows

for the implementation of efficent optimization algorithms.

2.2.5 Kernels: Summary

Here is a summary of the essential points developed in this introduction to kernel theory.

1. A PD kernel K is an inner product after the data space X has been embedded

into some Hilbert space H (Moore-Aronszajn theorem).

2. Therefore, the PD kernel induces the notion of kernel distance, a pseudometric on

X by extension of the canonical Hilbertian metric in H. The pseudometric is a

metric if the kernel is strictly PD.

3. The kernel trick is an algorithmic strategy consisting in the substitution of the

Gram matrix of inner-products by a kernel Gram matrix. The kernel trick exploits

the metric induction in order to:

• apply algorithms in data spaces of a larger dimension;

• obtain nonlinear versions of linear algorithms;

• or to extend vectorial algorithms to non-vectorial data.

4. Performing the kernel trick does not require information about the nature of the

space H or the expression of the mapping Φ : X → H.

5. The RKHS associated to K, a space of functions over X , is a realization of this

embedding. An explicit formula of the embedding is given in theorem A.0.6 in

appendix.
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6. The reproducing theorem allows a certain type of optimization problems in RKHS

to be implemented and solved efficiently.

2.3 Constrained optimization theory

Most statistical machine learning algorithms, including the SVM, involve the resolution

of a constrained optimization problem. Optimization problems constrained by equalities

and inequalities (introduced in Section 2.3.1) can be reformulated using Lagrangians in

order to facilitate their resolution (Section 2.3.2). A set of necessary conditions on

the solutions known as the Karush-Kuhn-Tucker (KKT) conditions is also often useful

(Section 2.3.3).

For this whole section, let E = Rn; and f , {gi|i ∈ J1, lK} and {hj |j ∈ J1,mK} be real

valued functions defined over E .

2.3.1 Problem formulation

Definition 2.3.1. Constrained optimization problem

Optimization problems under equality and inequality constraints of the following

type:

minimize
x∈E

f(x)

subject to gi(x) ≤ 0, i = 1, . . . , l

hj(x) = 0, j = 1, . . . ,m

(2.23)

are called constrained optimization problems.

Definition 2.3.2. Feasible points of a constrained optimization problem

An element x ∈ E is a feasible point of the constrained optimization problem (2.23)

if it satisfies the following conditions:

1. ∀i ∈ J1, lK, gi(x) ≤ 0

2. ∀j ∈ J1,mK, hj(x) = 0

An constrained optimization problem which admits at least one feasible point is said to

be feasible.
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A feasible point for which the inequalities of condition 1 are strict is a strictly feasible

point. A problem which admits at least one strictly feasible point is said to be strictly

feasible.

Definition 2.3.3. Solution of a constrained optimization problem

An element x̂ ∈ E is a solution of the constrained optimization problem (2.23) if it

satisfies all the following conditions:

1. x̂ is a feasible point of (2.23).

2. ∀x ∈ E , (x feasible =⇒ f(x̂) ≤ f(x))

Definition 2.3.4. Optimal value of a constrained optimization problem

The optimal value f∗ of a feasible constrained optimization problem (2.23) is defined

as:

f∗ = inf
x feasible

f(x) (2.24)

Remark 2.3.5. All feasible problems have an optimal value (eventually −∞) but not all

feasible problems have solutions.

2.3.2 Weak and strong duality

Definition 2.3.6. Lagrangian

The Lagrangian of the constrained optimization problem (2.23) is the function:

L : E × Rl × Rm → R

(x, µ, ν) 7→ f(x) +
l∑

i=1

µigi(x) +
m∑
j=1

νjhj(x)
(2.25)

with µ = (µi)i∈J1,lK and ν = (νi)i∈J1,mK known as the Lagrange multipliers.

Definition 2.3.7. Lagrange dual function

The Lagrange function of the Lagrangian (2.25) is the function:

g : Rl × Rm → R

(µ, ν) 7→ inf
x∈E

L(x, µ, ν)
(2.26)
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Definition 2.3.8. Lagrange dual problem

For the primal problem (2.23), the Lagrange dual problem is the following optimiza-

tion problem:

maximize
µ,ν

g(λ, µ)

subject to µi ≥ 0, i ∈ J1, lK
(2.27)

where g is the Lagrange dual function.

Subsequently, the original forumlation of an optimization problem as in equation

(2.23) is referred to as the primal problem.

Remark 2.3.9. Lagrange dual problems are always feasible.

Weak duality is a relationship existing between the optimal values of the primal and

dual problems without any additional conditions.

Theorem 2.3.10. Weak duality

Let f∗ be the optimal value of the feasable primal problem (2.23) and g∗ be the

optimal value of the corresponding dual Lagrange problem (2.27).

Then:

g∗ ≤ f∗ (2.28)

Proof. Let x ∈ E be a feasible point, i.e. ∀i ∈ J1, lK, gi(x) ≤ 0 and ∀j ∈ J1,mK, hj(x) =

0. Then, for µi ≥ 0, i ∈ J1, lK and νj , j ∈ J1,mK:

l∑
i=1

µigi(x) +
l∑

j=1

νihj(x) ≤ 0

which implies:

L(x, µ, ν) = f(x) +

l∑
i=1

µigi(x) +

l∑
j=1

νihj(x) ≤ f(x)

Since:

g(µ, ν) = inf
x′∈E

L(x′, µ, ν) ≤ L(x, µ, ν)
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then:

g(µ, ν) ≤ f(x)

which is valid for any feasible point x, µi ≥ 0, i ∈ J1, lK and νj , j ∈ J1,mK. Therefore,

by taking the supremum and infimum:

g∗ = sup
µ∈(R+)l,ν∈Rm

g(µ, ν) ≤ inf
x∈E

f(x) = f∗

Remark 2.3.11. f∗ and g∗ can eventually be equal to −∞. When they are both finite,

f∗ − g∗ is called the optimal duality gap.

Weak duality only gives a lower bound of the primal problem. We say that strong

duality is achieved when the inequality in theorem 2.3.10 is an equality. Strong duality

is achieved if the problem is convex and strictly feasible.

Definition 2.3.12. Convex optimization problem

An optimization problem is convex if it has the following form:

minimize
x∈E

f(x)

subject to gi(x) ≤ 0, i ∈ J1,mK

Ax = b

(2.29)

with f convex, gi convex for all i ∈ J1, lK, A ∈ Mm,n(R) and b ∈ Rm.

Theorem 2.3.13. Strong duality

Let f∗ be the optimal value of the strictly feasible and convex primal problem

(2.29) and g∗ be the optimal value of the corresponding dual Lagrange problem (2.27).

Then:

g∗ = f∗ (2.30)

Proof. Notice that if the matrix A is not a full rank matrix, then 2 cases are possible:
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1. The equation Ax = b does not have any solution, which is exluded since the

problem is assumed feasible.

2. The equation Ax = b can be rewritten into an equation A′x = b′ admitting the

same solutions and with A′ being a full rank matrix.

Therefore, without any loss of generality, it is possible to assume that A is a full rank

matrix.

First, we define the following set:

C1 ={(u1, . . . , ul, v1, . . . , vm, w) ∈ Rl+m+1|∃x ∈ E : ∀i ∈ J1,mK, gi(x) ≤ ui

∧Ax− b = v with v = (vj)j∈J1,mK ∧ f(x) ≤ w}

which is convex since f and all the gi are convex functions. We can note that the optimal

solution of the primal problem is:

f∗ = inf
(0,...,0,0,...,0,w)∈C1

w

Then we define the following set:

C2 = {(0, . . . , 0, 0, . . . , 0, w) ∈ Rl+m+1|w < f∗}

which is obviously convex.

Both sets are convex and C1 ∩ C2 = ∅ by construction. Therefore, C1 and C2 are

separated by a hyperplane, i.e. there exists (µ1, . . . , µl, ν1, . . . , νm, η) ∈ Rl+m+1 /∈ {0}

and ζ ∈ R such that:


(u1, . . . , ul, v1, . . . , vm, w) ∈ C1 =⇒

l∑
i=1

µiui +

m∑
j=i

νjvj + ηw ≥ ζ

(u1, . . . , ul, v1, . . . , vm, w) ∈ C2 =⇒
l∑

i=1

µiui +

m∑
j=i

νjvj + ηw ≤ ζ

An element of C1 remains in C1 when any ui, i ∈ J1, lK is increased. Therefore, the first
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implication gives:

∀i ∈ J1, lK, µi ≥ 0

In a similar fashion, the second implication gives:

η ≥ 0

which in turn yields:

∀w < f∗, ηw ≤ ζ

thus:

ηf∗ ≤ ζ

For any x ∈ E , (g1(x), . . . , gl(x), h1(x), . . . , hm(x), f(x)) belongs to C1 (for the recall,

hj(x) = 〈Aj , x〉 − bj where Aj is the j-th line of A and bj is the j-th element of the

vector b). Therefore, the first implication gives:

l∑
i=1

µigi(x) + 〈ν,Ax− b〉+ ηf(x) ≥ ζ

with ν = (νj)j∈J1,mK, which implies:

l∑
i=1

µigi(x) + 〈ν,Ax− b〉+ ηf(x) ≥ ηf∗ (2.31)

Now, only two different situations can happen:

Case η > 0: After division by η equation (2.31) becomes: for all x ∈ E , µ ∈ Rl and
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ν ∈ Rm,

L(x,
µ

η
,
ν

η
) ≥ f∗

=⇒ inf
x∈E

L(x, µ, ν) ≥ f∗

=⇒ sup
µ∈J1,lK,ν∈J1,mK

g(µ, ν) ≥ f∗

i .e. g∗ ≥ f∗

By weak duality (theorem 2.3.10), we finally get:

f∗ = g∗

Case η = 0: We will prove that this case is impossible.

Equation (2.31) becomes: for all x ∈ E ,

l∑
i=1

µigi(x) + 〈ν,Ax− b〉 ≥ 0 (2.32)

thus for x̃ ∈ E strictly feasible,

l∑
i=1

µigi(x̃) ≥ 0

which implies ∀i ∈ J1, lK, µi = 0 because ∀i ∈ J1, lK, gi(x̃) < 0. Moreover, since

(µ, ν, η) 6= 0, we get ν 6= 0.

Then (2.32) simplifies into: for all x ∈ E ,

〈ν,Ax− b〉 ≥ 0

i .e. (νTA)x− νTb ≥ 0

which is possible iff νTA = 0.

However ν 6= 0 and A is of full rank, therefore the only possibility is that the

matrix A is the empty 0-by-0 matix implying dim(b) = 0 and dim(ν) = 0 which is

impossible because we would get (µ, ν, η) = 0, which is excluded.
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If strong duality can be achieved, a solution of the primal problem minimizes the

Lagrangian for any solution of the corresponding dual problem.

Theorem 2.3.14. Primal-dual optimal pairs

Let x̂ be a solution of the primal problem. If strong duality holds, then for any

solution (µ̂, ν̂) of the corresponding dual problem:

f∗ = g∗ = L(x̂, µ̂, ν̂) (2.33)

(x̂, µ̂, ν̂) is referred to as a primal-dual optimal pair.

Proof. Since x̂ is a feasible point and ∀i ∈ J1, lK, µ̂i ≤ 0, on one hand:

l∑
i=1

µ̂igi(x̂) +

l∑
j=1

ν̂ihj(x̂) ≤ 0

=⇒ f(x̂) +

l∑
i=1

µ̂igi(x̂) +

l∑
j=1

ν̂ihj(x̂) ≤ f(x̂)

i .e. L(x̂, µ̂, ν̂) ≤ f∗ (2.34)

On the other hand:

inf
x∈E

L(x, µ̂, ν̂) ≤ L(x̂, µ̂, ν̂)

i .e. g∗ ≤ L(x̂, µ̂, ν̂) (2.35)

Therefore, equations (2.34) and (2.35) give:

g∗ ≤ L(x̂, µ̂, ν̂) ≤ f∗

and strong duality completes the proof.

2.3.3 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions are a set of necessary conditions on the

primal-dual optimal pairs.
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Theorem 2.3.15. Karush-Kuhn-Tucker (KKT) conditions

Let the target function f and the constraint functions {gi}i∈J1,lK and {hj}j∈J1,mK be

differentiable.

If x̂ a local minimum for the convex optimisation problem (2.29), then for any

(µ̂, ν̂) solution to the corresponding dual problem, the following conditions hold:

Stationarity:

~∇xf(x̂) +
l∑

i=1

µ̂i~∇xgi(x̂) +
m∑
j=1

ν̂i~∇xhi(x̂) = 0 (2.36)

Primal feasibility:

∀i ∈ J1, lK, gi(x̂) ≤ 0 (2.37)

Dual feasibility:

∀j ∈ J1,mK, hj(x̂) = 0 (2.38)

Complementary slackness:

∀i ∈ J1, lK, µ̂gi(x̂) = 0 (2.39)

Proof. The problem is convex, therefore the local minimum x̂ is a solution of the opti-

mization problem. Moreover, convexity and theorem 2.3.13 entail strong duality from

which theorem 2.3.14 entails that x̂ minimizes the Lagrangian at (µ̂, ν̂). Therefore:

~∇x(f(x̂) +

l∑
i=1

µ̂igi(x̂) +

m∑
j=1

ν̂ihi(x̂)) = 0

which gives the stationarity condition by linearity of the gradient.

The primal and dual feasability conditions are trivial consequences of (x̂, µ̂, ν̂) begin

a primal-dual optimal pair.

Complementary slackness conditions can also be easily established. Let i ∈ J1, lK.

x̂ is a feasible point of the primal problem thus gi(x̂) ≤ 0. (µ̂, ν̂) is a feasible point of
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the dual problem thus µi ≥ 0. If µ̂igi(x̂) 6= 0, i.e. gi(x̂) < 0 and µi > 0, posing µi = 0

improves the optimum of the dual problem which contradicts the fact that (µ̂, ν̂) is a

solution of the dual problem.

In summary, convex optimization problems have good properties entailed by strong

duality. The initial primal problem can be transformed into a Lagrange dual problem

which has additional variables and less constraints. The new problem can therefore

be simpler to solve, and with the same optima (theorem 2.3.14). Additionally, KKT

conditions can be used to further simplify the problem and compute the solutions of the

primal problem from the solutions of the dual problem.

2.4 Structural risk minimization

In this section, we present the SRM principle, a theoretical strategy for the resolution

of supervised learning problems based on the minimization of the statistical risk.

In Section 2.4.1, we first give a brief statistical introduction to supervised learning

presented as the minimization of a statistical measure known as the “risk”. In Section

2.4.2, we then show that although the risk cannot be directly computed, it can be

statistically bounded under some specific conditions leading to the strategy known as

the SRM principle .

2.4.1 Supervised learning in a nutshell

2.4.1.1 Definitions

This section introduces the basic terminology and notations relevant to supervised learn-

ing.

Let X be a set referred to as the input (or feature) space and Y ⊂ R be a set referred

to as the output (or label) space.

An observation (x, y) ∈ X × Y is an input-output pair assumed to occur i.i.d.

(independently and identically distributed) according to a probability distribution P

referred to as the problem distribution.

A labelling model (or simply model) is any function f : X → Y defining how to

associate the proper output to a given input.
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How well a model f is able to associate a given input x ∈ X to an output y ∈ Y is

defined by a loss function:

Λ : X × Y ×D → R

(x, y, f) 7→ Λ(x, y, f)

(2.40)

Remark 2.4.1. Often, the problem is referred to as a classification problem when the

support of P in Y is discrete, and as a scalar regression problem otherwise. In some

other cases, the distinction does not depend on P but on the type of loss function

considered.

The theoretical risk (or simply risk) is the expected value of the loss function with

a given model f according to the probability distribution P:

RΛ,P(f) = E(X,Y )∼P [Λ(X,Y, f))] (2.41)

Given a finite set of observations SN = (xi, yi)i∈J1,NK ∈ (X ,Y)N i.i.d. according to

P, the empirical risk is the mean value realized by the loss function with a given model

f on the set SN :

RempΛ,SN (f) =
1

N

N∑
i=1

Λ(xi, yi, f) (2.42)

Remark 2.4.2. When there is no risk of confusion, subscripts referring to the loss function

Λ, the problem P or the finite set SN can be omitted.

2.4.1.2 Objective: risk minimization

The goal of supervised learning is to find a model f minimizing the risk R(f). Un-

fortunately, the problem distribution P is not known in practice. Therefore, it is not

possible to minimize the theoretical risk directly.

Instead, only finite sets of observations SN are available. The use of finite training

sets of observations in order to solve the problem is referred to as supervised learn-

ing. Empirical risk minimization, i.e. finding a model f minimizing the empirical risk

Remp(f) may therefore seem a natural strategy.

However, the labelling model f minimizing Remp(f) can be far from a minimum of
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R(f), a problem described as over-fitting SN . In general, empirical risk minimization

produces models with poor performances on instances not yet seen in the training set.

2.4.2 Learning bounds

The SRM principle is based upon a bounding of the theoretical risk under some hypoth-

esis on the loss function Λ and Y, and by restricting the choice of the models to a subset

D ⊂ YX .

2.4.2.1 Lipschitz loss functions

Definition 2.4.3. Lipschitz φ-loss

Let Y = {−1,+1} and D = RX . A Lipschitz φ-loss function is a loss function

Λ : X × Y ×D where:

Λ(x, y, f) = φ(yf(x)) (2.43)

with φ : R→ R Lipschitz, i.e. there is a Lφ > 0 such that:

∀(x1, x2) ∈ X 2, |φ(x1)− φ(x2)| ≤ Lφ|x1 − x2| (2.44)

The following are examples of commonly encountered Lipschitz φ-loss functions.

Example 2.4.4. Hinge loss functions

φhinge(t) = max(0, 1− t)

φs.hinge(t) = max(0, 1− t)2

The hinge loss function φhinge is 1-Lipschitz. Strictly speaking, the squared hinge

loss function φs.hinge is not Lipschitz, however it is Lipschitz on any bounded subset of

R.

Hinge loss functions force the quantity yf(x) to be positive, i.e. f(x) to have the

same sign as y, and be at least greater that 1. The quantity yf(x) is often referred to

as the margin. Hinge loss function are used with certain SVMs which are adequately
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referred to as “large margin classifiers”.

The average Rademacher complexity is a measure of richness of a set of functions F

with respect to a probability distribution.

Definition 2.4.5. Average Rademacher complexity

Let (Xi)i∈J1,nK be n random variables i.i.d. according to a probability distribution

P.

The Rademacher complexity for a set of real valued functions F ⊂ RR is defined as:

RadP,n(F) = EX,σ

[
sup
f∈F

1

n

n∑
i=1

σif(Xi)

]
(2.45)

with (σi)i∈J1,nK being uniform i.i.d. ±1-valued random variables (a.k.a. Rademacher

variables).

When a Lipschitz φ-loss function is used, the difference between the theoretical risk

and the empirical risk can be probabilistically bounded in terms of the Rademacher

complexity.

Theorem 2.4.6. Learning bounds with Lipschitz φ-loss function

Let Λ a Lφ-Lipschitz φ-loss function, D ⊂ RX a set of models, f ∈ D and Sn a set

of n independent observations i.i.d. according to P.

The following inequality holds:

ES

[
sup
f∈F

RΛ,P(f)−RempΛ,Sn(f)

]
≤ 2LφRadP,n(D) (2.46)

In addition, if Λ is bounded by ψΛ for any observation from P, then with probability

at least 1− δ (for any δ ∈ [0, 1]):

RΛ,P(f) ≤ RempΛ,Sn(f) + 2LφRadP,n(D) + ψΛ

√
− log δ

2n
(2.47)

By abuse of language, we summarize inequality (2.47) saying that with “high proba-

bility”:

RΛ,P(f) ≤ RempΛ,Sn(f) + 2LφRadP,n(D) (2.48)
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2.4.2.2 Structural risk minimization in RKHS

When the set of models D is a topological ball in a RKHS, RadP,n(D) can itself be

bounded.

Theorem 2.4.7. Capacity control of RKHS balls

Let H be a RKHS with reproducing kernel K. The Rademacher complexity of HB =

{f ∈ H|‖f‖H ≤ B}, i.e. the ball of radius B in H verifies:

RadP,n(HB) ≤ B
√

EX [K(X,X)]

n
(2.49)

Proof.

RadP,n(HB) = EX,σ

[
sup
f∈HB

1

n

n∑
i=1

σif(Xi)

]

= EX,σ

[
sup
f∈HB

1

n

n∑
i=1

〈f, σiKXi〉H

]
, by the reproducing property

≤ EX,σ

[
sup
f∈HB

1

n

n∑
i=1

‖f‖H‖σiKXi‖H

]
, by Cauchy-Schwartz inequality

≤ EX,σ

[
1

n

n∑
i=1

B‖σiKXi‖H

]

=
B

n

√√√√EX,σ

[
‖

n∑
i=1

σiKXi‖2H

]

=
B

n

√√√√EX,σ

[
〈
n∑
i=1

σiKXi ,

n∑
i=1

σiKXi〉H

]

=
B

n

√√√√√EX,σ

 n∑
i=1

n∑
j=1

σiσj〈KXi ,KXj 〉H



=
B

n

√√√√√EX,σ

 n∑
i=1

n∑
j=1

σiσjK(Xi, Xj)

 , by the reproducing property

=
B

n

√√√√√EX

 n∑
i=1

n∑
j=1

Eσ [σiσj ]K(Xi, Xj)


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However, Eσ [σiσj ] = δi,j , therefore:

=
B

n

√√√√EX

[
n∑
i=1

K(Xi, Xi)

]

= B

√
EX [K(X,X)]

n

Therefore, the learning bound in theorem 2.4.6 becomes:

Theorem 2.4.8. Learning bounds in RKHS

Let Λ a Lφ-Lipschitz φ-loss function, HB ⊂ RX a RKHS ball with radius B, and Sn

a set of n independent observations i.i.d. according to P. Then, with “high probability”:

∀f ∈ HB, RΛ,P(f) ≤ RempΛ,Sn(f) + 2BLφ

√
EX [K(X,X)]

n
(2.50)

Proof. Corollary of theorem 2.4.6 and theorem 2.4.7.

Now, assume that K(X,X) ≤ K2
m is bounded. This is for instance the case with

the RBF kernel with Km = 1. In general, it is reasponable to assume that the data in

bounded.

Then, inequality (2.50) becomes:

RΛ,P(f) ≤ RempΛ,Sn(f) +
2BLφKm√

n

i .e. RΛ,P(f) ≤ RempΛ,Sn(f) +B∆ (2.51)

with ∆ =
2LφKm√

n
.

Therefore, rather than minimizing the empirical risk Remp(f) = 1
n

∑n
i=1 φ(yif(xi)),

one should strike the right balance between a minimization of Remp(f) and a minimiza-

tion of B∆ (hence of B) referred to as the capacity term, as illustrated on Figure 2.4.

The SRM principle can be formulated from inequality (2.51) as an optimization

problem. Given a RKHS H and a training data set Sn = (xi, yi)i∈J1,nK:

argmin
f∈H

1

n

n∑
i=1

φ(yif(xi)) + ∆‖f‖2H (2.52)
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Figure 2.4: The theoretical risk R(f) is bounded by the sum of the monotonically de-
creasing empirical risk Remp(f) and the monotonically increasing capacity term B∆.

2.5 Support vector machines

SVMs are direct applications of the SRM principle. They separate in two different

categories distinguished by the type of loss function φ employed:

• Support Vector Classifiers (SVC) based on the hinge loss solve classification prob-

lems.

• Support Vector Regressions (SVR) based on the ε-insensitive loss solve regression

problems.

Remark 2.5.1. In this thesis, the term SVM is used to designate either a classifier or

a regression. The terms SVC and SVR will be used when we want to address them

distinctively.

We first present how the SRM principle can be derived into the SVC for classification

(Section 2.5.1). Then, the SVR will be presented as an adaptation of the SVC to

regression tasks (Section 2.5.2). Section 2.5.3 bridges the gap between this statistical

definition of SVMs and their better-known geometrical interpretation. Finally, the main

differences between the most commonly used types of SVMs are presented in Section

2.5.4.
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2.5.1 Support vector classification

When the hinge loss function φhinge(t) = max(0, 1 − t) introduced in example 2.4.4 is

used, the optimization problem (2.52) yields a classifier known as the SVC. A num-

ber of successive transformations are necessary in order to turn problem (2.52) into a

computationally solvable and efficient form.

2.5.1.1 Primal form

Since the value of ∆ is unknown, problem (2.52) is equivalent to solving for some pa-

rameter λ ≥ 0:

argmin
f∈H

1

n

n∑
i=1

φhinge(yif(xi)) + λ‖f‖2H (2.53)

In practice, the tradeoff parameter λ has to be adjusted using a tuning method such as

a grid search.

The unconstrained and convex optimization problem satisfies the hypothesis of the

weak representer theorem (theorem 2.2.23). Therefore, the solution to problem (2.53)

has the following expression:

f(x) =
n∑
j=1

αjKxj (x) =
n∑
j=1

αjK(x, xj) (2.54)

By substitution into problem (2.53), we get:

argmin
(αi)i=1,...,N∈RN

1

n

n∑
i=1

φhinge

yi n∑
j=1

αjK(xi, xj)

+ λ
n∑
i=1

n∑
j=1

αiαjK(xi, xj) (2.55)

The next step will be to apply the KKT conditions (theorem 2.3.15) to prob-

lem (2.55). Therefore, we require the target function to be differentiable. However,

φhinge is not differentiable. This problem can be circumvented by a reformulation of

problem (2.55) into an equivalent form introducing new variables (ξi)
N
i=1 known as the
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slack variables:

minimize
(αi)i=1,...,N∈RN

1

n

n∑
i=1

ξi + λ

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

subject to φhinge

yi n∑
j=1

αjK(xi, xj)

 ≤ ξi, i = 1, . . . , N

(2.56)

Using the definition of φhinge, this is in turn equivalent to:

minimize
(αi)i=1,...,N∈RN

1

n

n∑
i=1

ξi + λ

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

subject to yi

n∑
j=1

αjK(xi, xj)− 1 + ξi ≥ 0, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(2.57)

(2.57) is known as the primal form of the SVC.

2.5.1.2 Dual form

Problem (2.57) can be solved more efficiently using another equivalent formulation

known as the dual form obtained by exploiting the primal-dual equivalence and the

KKT conditions.

The Lagrangian of the primal form (2.57) is obtained by introducing the Lagrange

multipliers µi ≥ 0 and νi ≥ 0:

L̃SVC(α, ξ, µ, ν) =
1

n

n∑
i=1

ξi + λ
n∑
i=1

n∑
j=1

αiαjK(xi, xj)

−
n∑
i=1

µi

yi n∑
j=1

αjK(xi, xj)− 1 + ξi

− n∑
i=1

νiξi

(2.58)

where α = (αi)i=1,...,N , ξ = (ξi)i=1,...,N , µ = (µi)i=1,...,N and ν = (νi)i=1,...,N .

(2.57) is a convex problem, therefore the stationarity condition of the KKT conditions

(theorem 2.3.15) applies:

~∇α,ξL̃SVC = 0 (2.59)

Thus, ∂L̃SVC
∂αi

= 0 and ∂L̃SVC
∂ξi

= 0 for i = 1, . . . , N .
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On one hand, for i = 1, . . . , N :

∂L̃SVC

∂ξi
=

1

n
− µi − νi (2.60)

and thus:

∂L̃SVC

∂ξi
= 0 =⇒ νi =

1

n
− µi (2.61)

On the other hand, for i = 1, . . . , N :

∂L̃SVC

∂αi
= 2λ

n∑
j=1

αjK(xi, xj)−
n∑
j=1

yjµjK(xi, xj) (2.62)

and thus:

∂L̃SVC

∂αi
= 0 =⇒ 2λ

n∑
j=1

αjK(xi, xj)−
n∑
j=1

yjµjK(xi, xj) = 0 (2.63)

Assuming λ 6= 0, for j = 1, . . . , N we can pose:

αj =
yjµj
2λ

+ α′j (2.64)

with α′j ∈ R. By substitution in (2.63), we obtain:

∀i ∈ J1, NK,
n∑
j=1

α′jK(xi, xj) = 0 (2.65)

We can remark that choosing any α′ = (α′j)j=1,...,N satisfying condition (2.65) does not

change the solution f . Therefore, we can simply pose α′ = 0 and:

αj =
yjµj
2λ

(2.66)

Substituting (2.61) and (2.66) into the Lagrangian (2.58) yields:

L̃SVC(α, ξ, µ, ν) =
N∑
i=1

µi −
1

4λ

N∑
i=1

N∑
j=1

yiyjµiµjK(xi, xj)−
N∑
i=1

µiξi (2.67)

Meanwhile, strong-duality (theorem 2.3.13) entails that the primal problem (2.57)
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is equivalent to the dual problem:

maximize
µ∈RN , ν∈RN

inf
α∈RN , ξ∈RN

L̃SVC(α, ξ, µ, ν)

subject to µi ≥ 0, i = 1, . . . , N

(2.68)

L̃SVC is linear in each of the ξi and therefore:

∃i : µiξi 6= 0 =⇒ inf
α∈RN , ξ∈RN

L̃SVC(α, ξ, µ, ν) = −∞ (2.69)

which implies that (2.68) is equivalent to:

maximize
µ∈RN

N∑
i=1

µi −
1

4λ

N∑
i=1

N∑
j=1

yiyjµiµjK(xi, xj)

subject to µi ≥ 0, i = 1, . . . , N

(2.70)

which is known as the dual form of the SVC.

Note that the slack variables vanish from the dual formulation of the SVC which

largely explains why it is more efficient to save the dual form than the primal form.

2.5.1.3 Decision function

Given a solution f̂ to the optimization problem, the binary decision function of the SVC

is given by:

sgn ◦ f̂ (2.71)

where sgn is the sign function such as sgn(t) = 1 if t ≥ 0 and sgn(t) = −1 if t < 0.

2.5.1.4 The support vectors

The training points for which αi 6= 0 are known as the support vectors. Only the support

vectors lead to active contraints (ξi > 0) in the optimization problem and have an impact

on the solution. Therefore, the solution of an SVM is entirely determined by its support

vectors.
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2.5.2 Support vector regression

The SVR commonly used for regression tasks is obtained when the ε-insensitive loss

φε(yi, f(xi)) is used in place of the hinge loss φhinge(yif(xi)). The ε-insensitive loss for

ε ≥ 0 is defined as:

φε(t1, t2) =


0 if |t1 − t2| ≤ ε

|t1 − t2| − ε otherwise

(2.72)

Remark 2.5.2. The ε-insensitive loss is not a Lipschitz φ-loss function. Therefore, the

SVR to is to be understood as an adaptation of the SVC to regression problems rather

than a direct application of the SRM principle.

The primal form of the SVR obtained by replacing the hinge loss by the ε-insensitive

loss in the formulation of the SVC is:

minimize
(αi)i=1,...,N∈RN

1

n

n∑
i=1

ξi + λ

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

subject to yi −
n∑
j=1

αjK(xi, xj) ≤ ξi + ε, i = 1, . . . , N

n∑
j=1

αjK(xi, xj)− yi ≤ ξi + ε, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(2.73)

The introduction of the slack variables result in the addition of two different constraints

per training sample into the problem instead of only one with the SVC.

For efficiency reasons, different slack variables ξi and ξ∗i should be used for each of
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the constraints:

minimize
(αi)i=1,...,N∈RN

1

n

n∑
i=1

ξi + ξ∗i + λ

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

subject to yi −
n∑
j=1

αjK(xi, xj) ≤ ξi + ε, i = 1, . . . , N

n∑
j=1

αjK(xi, xj)− yi ≤ ξ∗i + ε, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

ξ∗i ≥ 0, i = 1, . . . , N

(2.74)

(2.73) and (2.74) have the exact same solutions in αi. The dual form can subsequently

be obtained in a similar fashion as in Section 2.5.1.

2.5.3 Geometrical interpretation

SVMs are often approached from a geometrical angle as a construction of hyperplanes

in the RKHS H of K. The connection with our statistical approach is easily made using

the Moore-Aronszajn theorem (theorem 2.2.8) stating that a PD kernel is the inner

product in the RKHS after applying a mapping Φ to the data from X to H, i.e. :

K(x1, x2) = 〈Φ(x1),Φ(x2)〉H (2.75)

Therefore, the solution (2.54) becomes:

f̂(x) =
n∑
i=1

αi〈Φ(xi),Φ(x)〉H = 〈
n∑
i=1

αiΦ(xi),Φ(x)〉H (2.76)

which corresponds to the equation of the hyperplane orthogonal to
∑n

i=1 αiΦ(xi) in H.

Note that all hyperplanes defined in this fashion pass through the origin of H. An

offset variable b ∈ R is often added to the solution to allow for affine hyperplanes.

Accordingly, rather than a Hilbert space, the solution is searched in an affine space:

f̂ =
n∑
i=1

αiKxi + b (2.77)

with αi ∈ R and b ∈ R.
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An explanation on how similar problem forumlations can be obtained from geomet-

rical considerations is given in appendix of this thesis. A full tutorial on SVMs from a

geometrical standpoint is available in [4].

2.5.4 Popular variants of SVM

In this section, we briefly present the most popular types of SVMs, namely the 1-SVM

and LPSVM, and explain the motivations behind the differences in their design.

2.5.4.1 1-SVM

It is the most common type of SVMs. The problem formulations given in Section 2.5.1

(using the hinge-loss function) and in Section 2.5.2 (using the ε-insensitive loss functions)

are 1-SVMs. Notably, this category comprises the C-SVM and the ν-SVM presenting

different control parameters offering slightly different control options. The equivalent of

the C-SVM for scalar regression is known as the ε-SVR.

C-SVM Instead of the parameter λ used in (2.70), the control parameter is C = 1
2Nλ .

The resulting formulation of the primal problem is then:

minimize
(βi)i=1,...,N∈RN , b∈R

C

N∑
i=1

ξi +
1

2

N∑
i=1

N∑
j=1

yiyjβiβjK(xi, xj)

subject to yi(
N∑
j=1

yjβjK(xi, xj) + b)− 1 + ξi ≥ 0, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

0 ≤ βi ≤ C, i = 1, . . . , N

(2.78)

Note that βi = yiαi. The parameter C is known as the misclassification cost parameter.

A higher value of C will allow for a closer fit of the training data while a lower value of

C will force the decision model to be more regular. Therefore, C is a rather direct way

of controlling overfitting.

ν-SVM The ν-SVM is a popular alternative to the C-SVM. It replaces the control

parameter C with a new parameter ν ∈ [0, 1]. Its primal formulation also introducing a
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new variable ρ ≥ 0 is:

minimize
(βi)i=1,...,N∈RN , b∈R

1

N

N∑
i=1

ξi +
1

2

N∑
i=1

N∑
j=1

yiyjβiβjK(xi, xj)− νρ

subject to yi(
N∑
j=1

yjβjK(xi, xj) + b)− ρ+ ξi ≥ 0, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

ρ ≥ 0

(2.79)

Unlike the C parameter which has an implicit effect over the overfitting, the param-

eter ν has an explicit impact: it is the upper bound on the fraction of “margin errors”,

i.e. points for which ξi > 0. Full technical details are available in [5].

ε-SVR It is simply the C-SVM using the ε-insensitive loss instead of the hinge loss.

The ε-SVR therefore has two control parameters: the misclassification cost parameter C

playing the same role as for the C-SVM and the loss parameter ε specifying how much

the model can deviate from the training samples without penalty.

2.5.4.2 LPSVM

The linear-programming SVM (LPSVM) is obtained by replacing the 2-norm in the

target function of C-SVM by a 1-norm. The resulting primal form is:

minimize
(βi)i=1,...,N∈RN , b∈R

C
N∑
i=1

ξi +
1

2

N∑
i=1

yiβi

subject to yi(
N∑
j=1

yjβjK(xi, xj) + b)− 1 + ξi ≥ 0, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

0 ≤ βi ≤ C, i = 1, . . . , N

(2.80)

The resulting linear program can be solved much faster than the quadratic program

of the 1-SVM.
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Chapter 3

Incorporation of Prior-Knowledge

into SVMs: the State-of-the-Art

3.1 Introduction

Supervised machine learning methods such as SVMs are based upon the “learning from

example” paradigm: decision models are created from the information implicitly con-

tained into labeled training data. An advantage associated to such an approach is that

learning algorithms can be straightforwardly applied on the data without requiring spe-

cialized domain-knowledge from the user.

Nevertheless, the user often has a more or less specialized understanding of the

domain when dealing with real-life problems. On complex problems, the best results are

rarely obtained by blindly applying the learning algorithms, but rather by incorporating

as many problem specific aspects as possible into the learning process.

Moreover, cases where labeled data is not available in sufficient amounts for adequate

training are common. In those situations, using prior-knowledge to compensate for the

missing data appears as the natural solution. Unfortunately, the standard SVMs do not

provide a systematic way for incorporating such prior-knowledge and the user usually

has to rely upon ad hoc methods.

In this review chapter, we propose a state-of-the-art review of systematic methods

for the incorporation of prior-knowledge into SVMs. Incorporating formalized prior-

knowledge in statistical learning is an increasingly popular way to improve the perfor-
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mance of learning algorithms and the topic topic has attracted much interest from the

research community in recent years. For reference, we can point out two recent review

papers dealing with the incorporation of prior-knowledge into SVM by Lauer and Bloch

[38] and Wang [87] underlining the ongoing interest of the research community for this

topic.

Starting with a broad overview (Section 3.2), the review empathizes on the type

of prior-knowledge (Section 3.3) rather than the incorporation method. A summary of

the previous work by type and method is then available in Section 3.4 with a matrix

representation in Table 3.1. Finally, a discussion on how well the current state-of-the-art

addresses the issue of insufficient training data is provided in Section 3.5.

3.2 Overview of the related work

This review on prior-knowledge incorporation into SVMs has two possible angles of

approach:

• a review by type of prior-knowledge (Section 3.2.1);

• a review by incorporation method (Section 3.2.2).

Therefore, the previous work can be summarized into a matrix representation (see Ta-

ble 3.1 in Section 3.4) according to the type or prior-knowledge and the incorporation

method.

3.2.1 Types of prior-knowledge

Generally, prior-knowledge refers to any information on the problem that cannot be

inferred from the training data alone. This definition can cover a wide variety of aspects.

We propose the following subdivisions to the notion of prior-knowledge:

• the domain-specific prior-knowledge;

• the data-specific prior-knowledge;

• the problem-specific prior-knowledge.

The domain-specific knowledge which represent a large fraction of the previous work

corresponds to information about the domain of the application rather than specific
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aspects of the problem. For instance, the string edit distance is relevant to text-based

applications but not particularly to image-based applications. On the other hand, the

interpretation of images can be invariant to transformations such as a rotation or a

scaling which does not apply to text. This type of information is usually relevant to the

domain in general rather than a specific problem.

The data-specific knowledge consists in additional information about the available

data points. This includes qualitative information about the training data such as class

imbalances or the reliability of various sources, and information about the distribution

of the unlabeled data.

The problem-specific (or task-specific) knowledge corresponds to properties charac-

terizing the problem itself. For instance, a phenomenon can be monotonic w.r.t. a

parameter such as the “risk of breast cancer” of a person w.r.t. the “age” of that per-

son. We may also have explicit information about the range of parameters such as: “a

female under 20 years old is not at a significant risk of getting breast cancer”. This kind

of information is only meaningful in relation with a specific problem.

3.2.2 Prior-knowledge incorporation methods

The prior-knowledge can be incorporated into the SVM at virtually any stage of the

learning process. Accordingly, we can distinguish the following types of incorporation

methods:

• the sample-based methods;

• the optimization-based methods;

• the kernel-based methods.

The sample-based methods consist in modifications of the training samples often by

adding artificially generated “virtual” samples. This is the most straightforward method

for the incorporation of prior-knowledge in terms of implementation as no modification

of the learning algorithm or kernel is required.

The optimization-based methods modify the formulation of the constrained optimiza-

tion problem of a standard SVM. Technically, the resulting classifier can be considered

as a new type of SVM in its own right. The prior-knowledge is incorporated as additional
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constraints into the optimization problem and sometimes by an reformulating the target

function. The optimal solution may change but its search space will usually remains the

same. Optimization-based methods may represent substantial design and implementa-

tion work. Nevertheless, they present the advantage of incorporating prior-knowledge

in the very explicit form of constraints.

The kernel-based methods consist in replacing the “generic” kernel with a kernel

specifically designed to incorporate the prior-knowledge. Kernel-based methods are

direct applications of the kernel trick and do not require a particular modification of the

learning algorithm. Therefore, they can be used with any standard SVM of choice and

benefit from all the corresponding optimizations already available. However, embedding

explicit properties into kernels is not a straightforward task: the new kernel contains the

prior-knowledge in an implicit fashion and the validity of the method is difficult to prove

theoretically. In addition, the resulting kernel may not have the desirable mathematical

properties such as being PD.

Some of the related work presented in this chapter is a mixture of two or more

incorporation methods and will subsequently be referred to as “hybrid” methods. On

the other hand, each of the works addresses a single type of prior-knowledge presented in

Section 3.2.1. Therefore, a presentation according to the type of prior-knowledge is a less

ambiguous choice which justifies the approach taken in this review. This formalization

effort around the type of prior-knowledge is a main point of divergence compared to the

other reviews in [38] and [87].

3.3 Review by type of prior-knowledge

In this section, we present the related works according to the classification proposed in

Section 3.2.1.

3.3.1 Methods for domain-specific knowledge

The types of domain-specific knowledge addressed in previous works are: the invariance

of the label to specific transformations in X , and notions of distance specific to the

particular type of objects.
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3.3.1.1 Invariance to transformations

Certain types of objects are not affected by specific transformations of the input data.

Formally, we say a decision function f : X → Y is globally invariant to a set {Tθ :

X → Y| θ ∈ D} of transformations if:

∀θ ∈ D, f = f ◦ Tθ (3.1)

The nature of the transformations can vary according to the application. For instance, in

some computer vision applications, rotating an image may not affect its interpretation.

Then, Tθ are rotations parametrized by their angle θ. Similarly, if the label is invariant

to rescaling, Tθ will be homothecies parametrised by their scaling factor θ.

Sometimes the invariance to transformation is not global but instead local. Local

invariance around θ0 can be defined as:

∂f ◦ Tθ
∂θ

∣∣∣∣
θ=θ0

= 0 (3.2)

For instance, this is the case in some character recognition applications where a slanted

“u” as in “u” is still read a “u”, but rotating it too far will transform it into an “n”.

We can distinguish two different approaches to the problem of transformation invari-

ances in the previous works: the incorporation into the training set of “virtual” samples

artificially generated from the original training data, and a reduction of the problem to

equivalent classes (most often their approximation).

Virtual samples The idea of generating new training samples from the ones pre-

existing in the dataset has first been introduced by Poggio and Vetter [58] who used the

symmetries present in the objects to generate additional samples.

This type of approach was later justified by Niyogi et al. [51] as a way to perform

regularization through the incorporation of prior-knowledge. As presented in [51], the

idea behind virtual samples is to incorporate label invariance under a set of transforma-

tions. In a nutshell, if the labels are invariant under T , then we generate virtual samples

54



for all input-output pairs (xi, yi) by applying the transformation:

(xi, yi) 7→ (Txi, yi) (3.3)

The incorporation of virtual samples into SVMs has been proposed by Schölkopf

et al. [66] with the virtual SVM framework which tackles a major problem associated

with the use of virtual samples. Indeed, the additional virtual samples often result

in a greatly inflated training set causing a significant increase in the time and space

complexity of learning algorithms.

Meanwhile, the decision model of an SVM is fully determined by the support vectors,

which are a subset of the training data. Therefore, instead of generating virtual samples

for all the training set, a standard SVM is first used to select the support vectors and

virtual samples are generated only for the support vectors. A second SVM is then

trained from the support vectors and the aptly named virtual support vectors.

Nevertheless, the solution proposed by Schölkopf et al. is only a mitigation of the

problem rather than a definite solution since the amount of support vectors is not

bounded and can potentially remain very high.

Instead of inflating the problem with new samples, other methods are based on a

reduction of the problem to equivalent classes.

Jittering kernels An improvement to the incorporation of virtual samples in the

training set is to perform the transformation inside the kernel product itself. This idea

of jittering kernels proposed by Decoste and Burl for the k-nearest-neighbor classifier

and subsequently applied to SVMs in [12] consists in computing a number of “jitters”

(the equivalent of virtual samples) for each of the training samples and using them in

place of the original training samples when computing the kernel.

Given a kernel K and two data samples xi and xj , a jittered version KJ(xi, xj) of

the kernel product is computed in the following fashion:

1. Compute the NJ jitters J(xi) of the point xi, including itself.

2. Select the jitter xq that is the closest to xj in the RKHS, i.e. minimizing the
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kernel distance:

xq = argmin
x∈J(xi)

‖x− xj‖H

= argmin
x∈J(xi)

√
K(x, x)− 2k(x, xj) + k(xj , xj)

(3.4)

3. Pose KJ(xi, xj) = k(xq, xj).

Computing the jittered kernel is at least NJ times longer than computing the stan-

dard kernel K since NJ jitters are considered for each of the data samples. In return,

the problem can be up to NJ times smaller compared to the use of virtual samples which

corresponds to a quadratic gain in O(N2
J ) on the size of the kernel matrix.

Jittered kernels (and the virtual sample method) are particularly indicated to use

with transformations which produce a small, finite set of images such as symmetries.

Attention should be given to the fact that the resulting jittered kernel may not always

be PD depending on the type of jitters used.

Tangent distance kernels Unlike jittering kernels which approximate equivalent

classes by an arbitrary amount of samples, tangent distance kernels opt for an analytical

approach of the problem. Tangent distance kernels introduced for neural networks by

Simard et al. [73] and implemented for SVMs by Haasdonk and Keysers [28] specifically

deal with local invariances to transformations parametrized by a continuous parameter,

for instance rotations parametrized by their angle.

Let x ∈ X be a training sample and {Tθ|θ ∈ R} a set of invariant transformations

parametrized by θ ∈ R. We assume T0(x) = x. The equivalence class of x is a parametric

curve:

Cx(θ) = Tθ(x) (3.5)

Assuming it is continuously differentiable at θ = 0, Cx can be approximated in the

neighborhood of θ = 0, hence of Cx(0) = x, by its first order Taylor’s development
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around 0:

Cx(θ) = Cx(0) + θ
∂Cx
∂θ

(0) +O(θ2)

≈ x+ θ
∂Cx
∂θ

(0)

(3.6)

which is the tangent to the curve Cx at the point x.

A tangent distance kernel is then obtained by replacing the distance between two

points x1 and x2 in the RBF kernel by the distance dT between the trajectories Cx1 and

Cx2 approximated by their tangents:

dT (x1, x2) = min
θ1,θ2

(
x1 + θ1

∂Cx1

∂θ
(0)− x2 − θ2

∂Cx2

∂θ
(0)

)
(3.7)

Instead of the object-to-object version in (3.7), a sample-to-object version where

only one trajectory is considered is also possible. Note that TD kernel are usually not

PD kernels which is obvious in the case of the non-symmetric sample-to-object version.

Tangent vector kernels The tangent vector kernels proposed by Pozdnoukhov and

Bengio [59] can be viewed as the combination of the jittering kernel method and the

tangent distance. Instead of representing the equivalent class with a single tangent

vector, multiple tangent vectors are computed from multiple virtual support vectors

without explicitly adding them in the training set (as for the jittering kernel).

Haar integration kernels The Haar integration was proposed in [69] for the con-

struction of invariant features and the corresponding Haar-integration kernels were in-

troduced in [29]. The idea is to compute the average kernel output on the set T of

all the admissible invariant transformations. Formally, the Haar integration kernel is

defined as:

KT (x1, x2) =

∫
T

∫
T
K(T (x1), T ′(x2))dTdT ′ (3.8)
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If Φ : X → H is the implicit embedding of the data from X to the RKHS H of K:

KT (x1, x2) =

∫
T

∫
T
〈Φ(T (x1)),Φ(T ′(x2))〉HdTdT ′

= 〈
∫
T

Φ(T (x1))dT,

∫
T

Φ(T ′(x2))dT ′〉H
(3.9)

Therefore, the Haar integration kernel is analytically equivalent to the inner product

between the class averages in the kernel space (which may not have an reciprocal image

in X ).

Unlike jittering kernels, tangent distance kernels and tangent vector kernels, the

Haar integration kernels present the advantage to be positive definite.

The following previous methods use an optimization-based approach to deal with

transformation invariances.

Permutation-invariant SVM The permutation-invariant SVM (π-SVM) has been

introduces by Shivaswamy and Jebara [72] as a method to incorporate the invariance to

the permutations of the components of the input vectors. The method can be considered

a hybrid between a sample-based method and an optimization-based method.

The main idea is to find a permutation of the components for each of the inputs

that minimizes the radius of the data and maximizes the margin of the SVM. It is an

iterative optimization process repeating the two following steps:

1. Apply the SVM on the data and find the decision boundary and the margin.

2. For each input vector, find a permutation of its components using the Kuhn-

Munkres alignment algorithm (a.k.a. “Hungarian method”) bringing it closer to

the centroid of the data ball while not decreasing the margin of the SVM.

The iterative process is stopped once a local minimum is reached.

Semi-definite programming machines Semi-Definite Programming Machines (SDPM)

proposed by Graepel and Herbrich [25] find optimal hyperplanes between trajectories

instead of between samples. In many regards, the SDPM is a close relative of the tangent

distance kernel but follows an optimization based approach.
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Given a set of invariant transformations {Tθ|θ ∈ D}, we consider the trajectory

Cxi(θ) = Tθ(xi) for every data points xi approximated by its k-th order Taylor expansion

around θ = 0:

Cxi(θ) ≈
k∑
i=0

θk

k!

∂kCxi
∂θk

(0)

= Xi(θ)

(3.10)

(we assume T0(xi) = xi).

The Taylor expansions are incorporated into the optimization problem in place of

the data points:

minimize
w∈Rn

‖w‖22

subject to yi〈w,Xi(θ)〉 ≤ 0, θ ∈ D, i = 1, . . . , N

Note that the semi-definite program above used in [25] is slightly different from an SVM

but the idea is easily transposable to an SVM. For reference, semi-definite programming

was proposed in [80].

An advantage of the SDPM over the tangent distance kernels its the possibility to

use higher order Taylor expansions. The solution proposed by Graepel and Herbrich

works for the linear kernel. Their paper suggests that it could work with other kernels

provided that the Taylor expansion can be transposed to the kernel space, which is not

a trivial problem.

Invariant hyperplanes Schölkopf et al. [67] also proposed a modification of the op-

timization problem to incorporate local invariances. The decision function:

f(x) =
N∑
i=1

yi〈x, xi〉+ b (3.11)

is modified into:

g(x) =

N∑
i=1

yi〈Bx,Bxi〉+ b

=
N∑
i=1

yi〈x,BTBxi〉+ b

(3.12)
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where the real valued N -by-N matrix B contains the information about a first order

approximation of the local invariance.

The new decision function can be kernelized for nonlinear classification in the fol-

lowing fashion:

g(x) =
N∑
i=1

yiK(Bx,Bxi) + b (3.13)

3.3.1.2 Object-specific distance

Kernels for particular types of objects other than real-valued vectors from Rn are in-

creasingly popular. They entail a notion of distance (which is a valid mathematical

metric when the kernel is PD) which takes into account the specificity of the object.

Kernels for objects are very abundant in the literature. Therefore, two representative

examples are given rather than an exhaustive list of kernels.

Kernels for (finite) sets of vectors Kondor and Jebara [33] proposed a kernel for

finite sets of vectors from Rn. Sets of vectors are sometimes represented and treated as

matrices where the columns represent individual vectors but the two objects are in fact

quite different: with sets of vectors, the ordering of the objects (columns) is irrelevant

and the amount of objects is not necessarily fixed.

Their analytical approach is based on Bhattacharyya’s affinity between probability

distributions over X = Rn (verified to be a PD kernel in Chapter 2):

K(p1, p2) =

∫
x∈X

√
p1(x)p2(x)dx (3.14)

The idea is to consider the underlying distribution of the components instead of the

actual components.

A kernel principal component analysis [68] with the RBF kernel is first applied

on the sets of vectors in order to obtain their best approximation by a multivariate

normal distribution. Then, the distributions of the respective sets are used as inputs for

Bhattacharyya’s kernel.

A kernel for finite sets of vectors was also proposed by Wolf et al. [92] following a
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different algebraic approach based on the Gram-Schmidt decomposition of usual kernel

matrices and the computation of principal angles between them.

Local alignment kernel Sequences are encountered in many fields of application

such as sentences in natural language processing or DNA sequences in genetics.

Let A be an alphabet of characters and x1 and x2 two sequences. For instance

A={X,Y,Z} and:

x1 = XYXZZX

x2 = XXXY Y Z

(3.15)

Given an alignment π of the sequences, for instance:

X −−Y XZZZ

XXXY −−Y Z
(3.16)

the alignment score is computed as:

s(x1, x2, π) = S(X,X) + g(2) + S(Y, Y ) + g(2) + S(Z, Y ) + S(Z,Z) (3.17)

where S ∈ RA2
is a substitution matrix and g : N→ R a gap penalty function.

The widely-used Smith-Waterman local alignment score is given by:

SW (x1, x2) = max
π∈Π(x1,x2)

s(x1, x2, π) (3.18)

where Π(x1, x2) is the set of all possible alignments between x1 and x2.

The main idea behind the local alignment kernel is to replace the notion of Euclidean

distance in the RBF kernel by the Smith-Waterman local alignment score. However,

the result is not a positive definite kernel.

In order to solve the problem, Vert et al. [86] suggested the use of an alternative PD

formulation of the local alignment kernel:

KLA(x1, x2) =
∑

π∈Π(x1,x2)

exp(γs(x1, x2, π)) (3.19)

61



and showed that it achieves good performances on real-life biological problems.

3.3.2 Methods for data-specific knowledge

The prior-knowledge specific to the data can be divided into: additional information

about the labeled training data, and information about the distribution of the unlabeled

data.

3.3.2.1 Quality of the labeled data

Qualitative information about the labeled training data such as class imbalances w.r.t.

the problem distribution P can be incorporated with the following methods.

Weighted samples In the standard soft margin C-SVM, a single misclassification

cost parameter C > 0 is used for all the labeled data samples:

minimize
w∈Rn, b∈R

‖w‖22 + C
N∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

Instead, a particular cost parameter Ci > 0 can be set for each individual sample,

leading to the following re-formulation of the optimization function:

minimize
w∈Rn, b∈R

‖w‖22 +

N∑
i=1

Ciξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(3.20)

Using this framework, unbalanced training data can be dealt with by setting asym-

metric margins, an approach proposed by Veropoulos et al. [85] who used 2 different

misclassification cost parameters C+ and C− according to the class.

Uneven quality of the training data can be managed by setting a different misclas-

sification cost Ci for each sample according to the degree of confidence on the sample.

Wu and Srihari [95] define Ci as a monotonically decreasing function of the confidence

(although the problem formulation is slightly different from equation (3.20)). Wang
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et al. [88] also used a similar approach to attribute different weights to data obtained

from different sources according to their reliability.

The weighted sample framework is actually a hybrid methods which can be viewed

either as an optimization-based method (as in this description) or as a kernel-based

method. This is because a soft-margin C-SVM is equivalent to a hard-margin SVM with

a different kernel (see proposition 6.11 in [8]). More specifically, ifD = diag(d1, d2, . . . , dN )

is the diagonal matrix such that 1
di

= Ci where Ci is the misclassification cost corre-

sponding to the i-th sample, the soft-margin problem with kernel matrix K is equivalent

to the hard-margin problem with kernel K +D.

Knowledge-driven kernel selection Class imbalance issues can be particularly se-

vere in classification tasks involving a specific class of “positive” cases and another

unspecific class of “negative” cases. In such a situation, the unspecific class is usually

under-represented considering the variety of object it can contain.

This often occurs with problems involving the recognition of a precise object among

everything else. The “Car Evaluation Data Set” publicly available from the UCI machine

learning repository1 where images of cars must be distinguished from all other natural

images is an example of such a problem.

A solution proposed by Wang et al. [89] consists in choosing a kernel that maximizes

the ratio of the scatter of the negative samples over the scatter of the positive samples.

This will cause the decision boundary to tightly fit the positive samples while largely

avoiding the negative samples.

3.3.2.2 Distribution of the unlabeled data

In many cases, the unlabeled data is already available during training. The specific

distribution of the unlabeled data can then be incorporated into the learning process,

an approach known as transductive learning.

Transductive SVM On one hand, the classical SVM performs inductive learning

by constructing a general decision model from the labels of specific training samples.

On the other hand transductive learning proposed by Vapnik [82] consists in directly

1http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
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transposing the labels of specific training samples to specific unlabeled samples.

Transductive learning directly solves a particular problem whereas inductive learning

tries to solve a general problem first before deriving a solution for the particular problem.

Therefore, transductive learning which does not require generality is expected to be

considerably easier than inductive learning.

The transductive version of the C-SVM extends the standard C-SVM by taking into

account the distribution of the unlabeled data D∗ = {x∗i }N
∗

i=1. The idea is to train the

SVM assuming labels for the data in D∗ that maximize the resulting margin:

minimize
w∈Rn, b∈R

‖w‖22 + C
N∑
i=1

ξi + C∗
N∗∑
j=1

ξ∗j

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

y∗j (〈w, x∗j 〉+ b) ≥ 1− ξ∗j , j = 1, . . . , N∗

y∗j ∈ {−1,+1}, j = 1, . . . , N∗

ξ∗j ≥ 0, j = 1, . . . , N∗

C > 0 and C∗ > 0 are the misclassification cost parameters for the labeled data

and the unlabeled data respectively. In practice, C∗ ≤ C is recommended in order

to penalize less strongly the misclassification of the unlabeled samples which are given

hypothetical labels.

3.3.3 Methods for problem-specific knowledge

Properties related to the task itself are usually the most specific and therefore the most

useful as prior-knowledge. Among the previous work, labeled regions of X , i.e. subsets of

X with an infinite amount of elements, have been extensively considered in a framework

known as the Knowledge-based Linear Programming (KBLP) from Mangasarian et al.

and its various extensions. In this review, we collectively refer to them as the Knowledge-

Based SVMs (KBSVMs).
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3.3.3.1 Labeled regions

The expression knowledge-based linear programming coined by Mangasarian [45] covers

a set of methods incorporating constraints in the form of logical implications into the

optimization problem. Mangasarian et al. use the LPSVM, the linear programming

version of the SVM presented in Chapter 1, hence the appellation of the framework.

Nevertheless, their method is also applicable to the more usual quadratic programming

versions.

The logical implications are obtained from prior-knowledge corresponding to labeled

regions. A labeled region (X ′, y′) ∈ P(X )× Y where P(X ) are the parts of X suggests

that the labeling function f̂ : X → Y should attribute the label y′ to points from X :

x ∈ X ′ =⇒ f̂(x) = y′ (3.21)

which gives the logical implication. They can be seen as an extension of the standard

labeled samples.

Remark 3.3.1. At the attention of the reader familiar with the KBLP framework, the

conventions and notations in this section are chosen to be consistent with the rest of the

manuscript and are largely different from those employed by Mangasarian et al.

Knowledge-based SVC

Linear classification Knowledge-based linear programming was first introduced

in the context of linear classification by Fung et al. [23, 45] as a modification of the

LPSVM. The modification allows the introduction of prior-knowledge in the form of

polyhedral labeled sets (referred to as knowledge sets in [23]) in the input domain.

The original LPSVM solves the following constrained linear optimization problem

with parameter C > 0:

minimize
w∈Rn, b∈R

‖w‖1 + C
N∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(3.22)
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A polyhedral knowledge set P can be defined by a set of MP linear equalities:

〈ej , x〉 ≤ εj j = 1, . . . ,MP (3.23)

This can be summarized by the equivalent matrix notation:

Ex ≤ e (3.24)

with E begin the matrix with lines eTj for j = 1, . . . ,MP and e the vector with coordi-

nates εj for j = 1, . . . ,MP .

The prior-knowledge consists in defining polyhedral knowledge sets for which y = 1

or y = −1. Therefore, for each knowledge set defined as in (3.24), the following logical

implication must hold (we choose +1 or −1 according to the class of the knowledge set):

Ex ≤ e =⇒ ±(〈w, x〉+ b) ≥ 1 (3.25)

However implications such as (3.25) cannot be directly incorporated as linear constraints

into the optimization problem (3.22).

Fung et al. [23] proved that the logical implication (3.25) is equivalent to the existence

of a solution u for the set of linear constraints (again, the sign is chosen according to

the class):


ETu± w = 0

〈e, u〉 ± b+ 1 ≤ 0

u ≥ 0

(3.26)

Lets consider the following knowledge sets:

• k sets {x|Eix ≤ ei} belonging to the class with label +1

• l sets {x|Fix ≤ fi} belonging to the class with label −1
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Problem (3.22) can then be rewritten as the following valid linear program:

minimize
w∈Rn, b∈R

‖w‖1 + C

N∑
i1=1

ξi1

subject to yi1(〈w, xi1〉+ b) ≥ 1− ξi1 , i1 = 1, . . . , N

ξi1 ≥ 0, i1 = 1, . . . , N

ETi2ui2 + w = 0, i2 = 1, . . . , k

〈ei2 , ui2〉+ b+ 1 ≤ 0, i2 = 1, . . . , k

ui2 ≥ 0, i2 = 1, . . . , k

F Ti3vi3 − w = 0, i3 = 1, . . . , l

〈fi3 , vi3〉 − b+ 1 ≤ 0, i3 = 1, . . . , l

vi3 ≥ 0, i3 = 1, . . . , l

(3.27)

The linear program (3.27) is a hard-margin problem for the knowledge sets and

requires that every of them is classified correctly which is not always possible. Slack

variables ri ,ρi, si and σi are added to turn the hard constraints into soft constraints,
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in a fashion very similar to the soft-margin SVM:

minimize
w∈Rn, b∈R

‖w‖1 + C

N∑
i1=1

ξi1

+µ
(∑k

i2=1(‖ri2‖1 + ρi2) +
∑l

i3=1(‖si3‖1 + σi3)
)

subject to yi1(〈w, xi1〉+ b) ≥ 1− ξi1 , i1 = 1, . . . , N

ξi1 ≥ 0, i1 = 1, . . . , N

− ri2 ≤ ETi2ui2 + w ≤ ri2 , i2 = 1, . . . , k

〈ei2 , ui2〉+ b+ 1 ≤ ρi2 , i2 = 1, . . . , k

ui2 ≥ 0, i2 = 1, . . . , k

ri2 ≥ 0, i2 = 1, . . . , k

ρi2 ≥ 0, i2 = 1, . . . , k

− si3 ≤ F Ti3vi3 − w ≤ si3 , i3 = 1, . . . , l

〈fi3 , vi3〉 − b+ 1 ≤ σi3 , i3 = 1, . . . , l

vi3 ≥ 0, i3 = 1, . . . , l

si3 ≥ 0, i3 = 1, . . . , l

σi3 ≥ 0, i3 = 1, . . . , l

(3.28)

The parameter µ > 0 is the misclassification cost associated with the knowledge sets.

Setting specific values for µ and C defines a balance between data and prior-knowledge.

Choosing µ = 0 results in (3.28) begin a standard LPSVM without knowledge sets. Con-

versely, choosing C = 0 corresponds to training the SVM without training data from

the prior-knowledge only. µ and C must be adjusted by a tuning method such as grid

search.

Figure 3.1 from [23] shows the impact of the polyhedral knowledge sets on the deci-

sion function.

Nonlinear classification Fung et al. [24] subsequently extended their framework

to the use with a nonlinear kernel K. The authors use the following generalized support
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(a) Linear LPSVM (b) Addition of three knowledge sets

Figure 3.1: Influence of knowledge sets on the decision function of the KBSVM (from
[23]).

vector machine framework presented in [44]:

minimize

(αi)
N
i=1 ∈ RN

b ∈ R

N∑
i=1

βi + C
N∑
i=1

ξi

subject to yi(

N∑
j=1

αjyjK(xj , xi) + b) ≥ 1− ξi, i = 1, . . . , N

− βi ≤ αi ≤ βi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(3.29)

Again, a linear program is used instead of the more standard quadratic programming

formulation.

The logical implication (3.25) also needs to be “kernelized” correspondingly, which

results in the following logical implication:

Ex ≤ e =⇒ ±(
N∑
i=1

αiyiK(xi, x) + b) ≥ 1 (3.30)

Unfortunately, (3.30) cannot be transformed into an equivalent set of linear constraints

such as (3.26) due to non-linearity and non-convexity issues.

In order to bypass the difficulty, the authors propose to use a kernelized version of
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the knowledge set. Instead of the polyhedral sets:

{x|Ex ≤ e} (3.31)

kernelized polyhedral sets are defined as:

{z|KE,Xz ≤ e} (3.32)

where X is the N -lines by n-columns matrix representing the training data set (lines

correspond to instances and columns to features) and KE,X = (K(ei, xj))
j=1,...,N
i=1,...,MP

is the

kernel matrix between data set E and data set X.

The kernelization of the knowledge sets can be justified in the following fashion.

Under the general assumption that the columns of X are linearly independent, the

linear version of the logical implication (3.25) is equivalent to:


Ex ≤ e

x = XT z

=⇒


±(wTx+ b) ≥ 1

w = XT (y ⊗ α)

x = XT z

(3.33)

where ⊗ designates the element-wise multiplication of vectors (resulting in a vector of

the same dimension) and y (resp. α) is the vector with components yi, i = 1, . . . , N

(resp. αi, i = 1, . . . , N). By substitution, this is equivalent to:

EXT z ≤ e =⇒ ±((y ⊗ α)TXXT z + b) ≥ 1 (3.34)

Therefore, the kernelization of this implication yields:

KE,Xz ≤ e =⇒ ±((y ⊗ α)TKX,Xz + b) ≥ 1 (3.35)

where we recognize the kernelized knowledge set (3.32). Subsequently, Fung et al. [24]

proved that the kernelized logical implication (3.35) is equivalent to the existence of a

70



solution u satisfying the following set of linear constraints:


KX,Eu±KX,X(y ⊗ α) = 0

〈e, u〉 ± b+ 1 ≤ 0

u ≥ 0

(3.36)

By preserving the notations introduced in the linear case for the knowledge sets and

by introducing slack variables in a similar fashion as in (3.28), we finally obtain the

following linear program formulation with parameters C > 0 and µ > 0:

minimize

(αi)
N
i=1 ∈ RN

b ∈ R

N∑
i=1

βi + C
N∑
i1=1

ξi1

+µ
(∑k

i2=1(‖ri2‖1 + ρi2) +
∑l

i3=1(‖si3‖1 + σi3)
)

subject to yi1(
N∑
j=1

αjyjK(xj , xi1) + b) ≥ 1− ξi1 , i1 = 1, . . . , N

− βi1 ≤ αi1 ≤ βi1 , i1 = 1, . . . , N

ξi1 ≥ 0, i1 = 1, . . . , N

− ri2 ≤ KX,Ei2
ui2 +KX,X(y ⊗ α) ≤ ri2 , i2 = 1, . . . , k

〈ei2 , ui2〉+ b+ 1 ≤ ρi2 , i2 = 1, . . . , k

ui2 ≥ 0, i2 = 1, . . . , k

ri2 ≥ 0, i2 = 1, . . . , k

ρi2 ≥ 0, i2 = 1, . . . , k

− si3 ≤ KX,Fi3
vi3 −KX,X(y ⊗ α) ≤ si3 , i3 = 1, . . . , l

〈fi3 , vi3〉 − b+ 1 ≤ σi3 , i3 = 1, . . . , l

vi3 ≥ 0, i3 = 1, . . . , l

si3 ≥ 0, i3 = 1, . . . , l

σi3 ≥ 0, i3 = 1, . . . , l

(3.37)

Unfortunately, this nonlinear knowledge-based linear programming framework suffers

from a series of drawbacks due to the kernelization (3.32) of the prior-knowledge which
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depends on the data X. This is undesirable because it is no longer possible to think

about the prior-knowledge independently from the data.

Moreover, this kernelization process is non-intuitive and non-transparent. This re-

sults in the prior-knowledge having a largely unpredictable effect on the decision func-

tion. The illustration on the check-board data set in figure 3.2 shows that the prior-

knowledge seems to spread to all the data, regardless of where the knowledge sets were

actually located in X .

(a) Without prior-knowledge (b) With prior-knowledge

Figure 3.2: Results on the check-board dataset from [24]. Only two knowledge sets cor-
responding to the two leftmost squares of the lowest line are defined. The prior-knowledge
has an effect on all the squares of the check-board regardless of which ones actually contains
prior-knowledge.

Mangasarian and Wild [47] later proposed an extension of this nonlinear KBLP to

a different form of nonlinear prior-knowledge in which the polyhedral constraint on the

knowledge sets is relaxed.

Knowledge-based SVR The KBLP framework for classification can also be used for

regression. Early work using the initial model of kernelized knowledge is available in

[49] and later work with the modified knowledge model in [46]. In addition, a fusion of

the latest SVM and SVR frameworks can be found in [48].

The adaptation from classification problems to regression problems requires little

modification. The the loss function needs to be adapted but the way in which the prior-

knowledge is incorporated remains identical. Therefore, any kind of SVMs including

linear and quadratic versions of SVCs and SVRs can be used instead of the linear

programs initially proposed. Mangasarian et al. [50] propose themselves an adaptation

of their framework to another type of SVM known as “proximal SVM”.
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Extensions and variations The following are previous work on the incorporation of

labeled sets into SVMs proposing an alternative to the KBLP framework or extending

it.

Simpler KBSVM Le and Smola [40] proposed a much simpler alternative to

Mangasarian’s knowledge-based linear programming framework. Instead of incorpo-

rating the prior-knowledge as additional constraints, Le and Smola opted to directly

modify the decision function f by composing it with a function φ : Y → Y containing

the prior-knowledge.

For instance, in the case of binary classification:

φ(y) =


max(1, y) if y belongs to a labeled region for the class +1

min(−1, y) if y belongs to a labeled region for the class +1

x otherwise

(3.38)

Figure 3.3 shows that the new decision function φ◦f itself integrates the prior-knowledge

rather than its choice being constrained by the prior-knowledge as in Mangasarian’s

framework.

Figure 3.3: Left: Mangasarian’s knowledge-based SVM, right: simplified knowledge-based
SVM (from [40]).

This radically simple method circumvents all the difficulties encountered by Man-

gasarian et al. regarding the incorporation of prior-knowledge such as the kernelization

of prior-knowledge, the opaqueness of the prior-knowledge once kernelized or the addi-

tion of numerous new parameters and variables to the problem.

However, these advantages do not come for free. Rather than really solving the

prior-knowledge incorporation issue, this method transforms it into an optimization

issue. Indeed, the minimization of the new regularized empirical risk corresponding to
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φ ◦ f (which is the underlying principle of the SVM as fully detailed in Chapter 1) does

not guarantee a solvable convex problem. As a workaround, Le and Smola proposed an

approximate resolution without any guarantees on the quality of the solution.

The authors claim that additional forms of prior-knowledge other than labeled sets

such as monotonicity or parity can be incorporated with their method. Although func-

tions φ modeling such properties exist, the problem of solving the resulting optimization

problem remains entire and arguably without a simple solution.

Therefore, this method is more an interesting modeling idea than a fully workable

alternative.

Extensional KBSVM Maclin et al. [42] proposed a simplification of the KBLP

framework. In the extensional KBSVM, the knowledge sets are considered as an exten-

sion of the labeled data samples of the same class. It simplifies the fairly complex way

imperfect advice is dealt with slack variables and additional training parameters in the

original framework from Mangasarian et al.

When knowledge sets are in contradiction with the labeled data, instead of slacking

the knowledge sets themselves, the knowledge sets are left unchanged and the constraints

themselves are slacked.

Maclin et al. [43] also proposed a method for automatic refinement of the labeled

regions.

Online KBSVM Kunapuli et al. [36] proposed an online learning version of

knowledge-based support vector machines. A passive-aggressive framework is used to

update the SVM with prior-knowledge when new samples are added.

Knowledge Initialisation Concurrently to the development of KBLP, Diederich

and Barakat [15] proposed an alternative sample-based approach to the problem. It can

be viewed as attempting to achieve the same objectives as the KBLP framework using

the virtual sample method.

After a preliminary refinement phase using neural-networks, the logical implications

are used to generate virtual samples which are added to the training set for the SVM.

Although not referred to as “knowledge initialization”, [98] also proposed a related

method for the incorporation of fuzzy IF-THEN rules via the generation of additional
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virtual samples.

Despite being straightforward, those methods suffer from the severe drawbacks of

the virtual sample method and can arguably considered as a less good approach than

the optimization-based approach taken in other related works.

3.4 Matrix summary of the previous work

Table 3.1 summarizes the related work presented in Section 3.3 in a matrix representation

according to the type of prior-knowledge and the incorporation method. It appears that

almost any combination of type and method was tried.

The earliest works dating back from the 90s are sample-based methods dealing with

transformation invariances (a type of domain-specific knowledge) through the genera-

tion of artificial, virtual samples. They implement a straightforward idea which proved

effective but can significantly increase the size of the problem which is a crippling draw-

back.

Mostly for this reason, the sample-based methods were later replaced by kernel-based

methods (jittering kernels, Haar integration kernels) and optimization-based methods

(π-SVM) exploiting the same idea without explicitely adding virtual samples. Other

kernel-based (tangent distance kernels, tangent vector kernels) and optimization-based

(semi-definite programming, invariant hyperplanes) methods consider analytical approx-

imations of the equivalent classes rather than virtual samples.

A number of kernel-baseds method were also developped not to deal with invariances

but for specific datatypes (sets, sequences, etc. . . ). They allow an extension of the SVMs

from points in Rn to the objects they are designed for.

Data-specific prior-knowledge was mainly addressed with optimization-based meth-

ods (weighted samples and transductive SVMs). We noted that the weighted samples

methods which were first developed as a reformulation of the optimization problem

(adjustment of the misclassification costs) is equivalent to a kernel-based approach.

A family of optimization-based methods referred to as the KBSVM framework and

its variations represent the main research effort on problem specific prior-knowledge

and deal with the incorporation of labelled sets into the problem. A few sample-based

approaches (knowledge initialization) pursuing the same objectives as the KBSVMs
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were also proposed. Their much simpler design is an advantage but they suffer from the

same drawbacks as the earlier sample-based approaches. Moreover, labelled sets usually

contain an infinite amount of points and are difficult to discretize into virtual samples.

Table 3.1 shows that 2 combinations were not addressed by previous works:

• sample-based methods for data-specific knowledge;

• kernel-based methods for problem-specific knowledge.

The absence of work dealing with the first combination can be explained by the

fact that knowledge on the data instances themselves does not naturally translate into

additional data instances.

In contrast, kernel-based approaches to the incorporation of properties specific to

the problem may have many latent qualities as developed in the following section.

3.5 Prior-knowledge and missing data: discussion and fu-

ture work

The previous work on the incorporation of prior-knowledge presented in this chapter

shows that various forms of knowledge can be incorporated into SVMs with various

methods in order to successfully improve the learning results.

Nevertheless, an excessive focus on the improvement of results alone may steer us

away from a more essential question which is usually sidestepped: “does the method

provide an adequate answer to precise needs of the user?”

In practice, situations in which data is scare but some form of prior-knowledge about

the problem is available are common place. In this context, it is clear that the prior-

knowledge is an alternative to the missing data rather than a mean to improve upon

already satifactory results.

Therefore, it is insufficient for the different methods to simply improve upon learning

results on average. Instead, they should be able to substitute prior-knowledge to missing

training data.

In this section, we provide a synthetic discussion on the related work in relation with

this objective and identify the most important challenges for future works and the most
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Table 3.1: Matrix view of the state-of-the-art on the incorporation of prior-knowledge
into SVMs. Columns correspond to types of prior-knowledge and rows to incorporation
methods. The hybrid methods appear in more than one row.

Domain-specific Data-specific Problem-specific
Sample-based

• Virtual
samples
[51, 58, 66]

• π-SVM [72]

• Knowledge ini-
tialization [15,
98]

Kernel-based

• Jittering ker-
nels [11, 12]

• Tangent dis-
tance kernels
[28, 59, 73]

• Tangent vec-
tor kernels
[59]

• Haar integra-
tion kernels
[29, 69]

• Kernels for fi-
nite sets [33,
92]

• Local align-
ment kernel
[86]

• Weighted sam-
ples [85, 88,
95]

• Knowledge-
driven kernel
selection [89]

Optimization-
based • π-SVM [72]

• Semi-definite
programming
machines [25]

• Invariant
hyperplanes
[67]

• Weighted sam-
ples [85, 88,
95]

• Transductive
SVM [82]

• KBSVM
[23, 24, 45–50]

• Extensional
KBSVM
[42, 43]

• Simpler KB-
SVM [40]

• Online KB-
SVM [36]
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promising leads to address them.

3.5.1 Prior-knowledge as a substitute for data

Each of the 3 types of prior-knowledge presented in Section 3.2.1 including knowledge

on the domain, the data and the problem has been addressed by some previous work as

shown in the matrix representation in Table 3.1.

A majority of it relates to domain-specific prior-knowledge and in particular to in-

variances to transformations. Although contributing to improve learning results by

playing an important regularisation role [51], this type of prior-knowledge provides the

least amount of specific information on the problem itself.

In particular, domain-specific prior-knowledge is not expected to act as a substitute

for missing data. Indeed, the methods work either by generating new “virtual” samples

from the existing ones or by deriving equivalent classes (or an approximation) from

them. Therefore, these methods cannot perform well without the preexistence of “good”

samples in the data.

The works dealing with data-specific knowledge either correct class imbalances [85,

88, 89, 95] or exploit the distribution of the unlabelled data [82] and do not address the

problem of missing data.

The only type of prior-knowledge adequately fulfilling this role is the problem-specific

prior-knowledge. The previous works structured around the KBSVM framework [23, 24,

45–50] focuses on the incorporation of knowledge as labeled regions. These “knowledge

sets” placed on regions containing few data can induce radical changes in the decision

function that are not dictated by the data.

However, the prior-knowledge about the problem can take many other forms that

just labeled regions. For instance, we may also think of be global properties of the model

such as monotonicity, periodicity or correlation patterns of the output w.r.t. features.

Those other types of prior-knowledge are yet to be addressed in a convincing way.

3.5.2 Soundness and potential of kernel methods

The present review also shows the advantages and drawbacks of the different incorpora-

tion methods namely the sample-based, optimization-based and kernel-based methods.
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The sample-based methods involving the generation of “virtual” samples are the

most straightforward to implement as no modification is required on the algorithm or the

kernel. However, they suffer from clear drawbacks such as a potentially dramatic increase

in the size of the problem (a problem only mitigeated by the restriction to virtual support

vectors [66]) or problems posed by an arbitrary discretization of continuous properties.

In practice, the sample-based methods mostly used for transformation invariances [51,

58, 66] have progressively been phased out in favor of kernel-based methods [11, 12, 28,

59, 59, 73, 86] and optimization-based methods [25, 67] fulfilling the same roles.

The optimization-based methods offer an explicit way to incorporate prior-knowledge

through additional constraints. However, they suffer from the high-complexity of their

design making them difficult to implement and use in practice as evidenced by the

various attempts to simplify the KBSVM framework [40, 42, 43] often at the cost of

decreased performances or new issues.

In addition, optimization-based methods alter the statistical meaning of the SVM by

modifying the target function. This brings a theoretical dilemma: ad hoc modifications

of the problem formulation denatures the essence of the SVM as an implementation of

the structural risk minimization principle (see Chapter 2). In other words, large modi-

fications of the optimization problem lead to giving up on the theoretically guaranteed

advantages of the SVM.

Finally, they are not a good choice to deal with the issue of missing data: while

displacing the optimum in the search space, they do not modify the search space itself.

Indeed, the form of a solution f remains the one given by the application of representer

theorem studied in Chapter 2:

f(x) =

N∑
i=1

K(xi, x) + b (3.39)

which quality directly depends on the training data.

Compared to other approaches, the kernel-based methods offer the most implicit and

indirect way to deal with prior-knowledge. Therefore, they usually require more intuition

to design them and more theoretical work to justify them. However, the “kernel trick”

is the natural and theoretically valid way to modify the RKHS in which the solution is

searched. Moreover, the search space will be adapted regardless of the available data.
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Therefore, a kernel-based approach appears as the soundest and most promising option.

3.5.3 Future challenges and promising leads

The present review prompts several conclusions regarding the current state-of-the-art.

First, most of the current methods are not designed to perform well in situations

where training data is severely lacking. Therefore, they do not allow the use of prior-

knowledge as a substitute for training data.

Second, the type of prior-knowledge addressed in the current methods relates more

to the general domain of application rather than the problem itself.

Third, although more difficult to design and justify, the kernel-based approaches do

not suffer from the crippling drawbacks of sample-based methods and the limitations of

optimization-based methods.

In the light of these conclusions, it appears necessary to focus the future efforts

towards the incorporation of prior-knowledge more specific to the properties of the

problem itself, for which a kernel-based approach seems the most indicated.

A framework enabling an effective substitution of the missing data with prior-

knowledge would be an important stepping stone for a switch of paradigm in the current

use of SVMs towards more realistic situations with limited data and a few global prop-

erties about the problem.
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Chapter 4

KE-RBF: Augmenting the RBF

Kernel with Prior-Knowledge

4.1 Introduction

In this chapter, we present our original framework for the incorporation of various forms

of prior-knowledge into SVMs referred to as the Knowledge-Enhanced RBF (KE-RBF)

framework.

KE-RBF kernels are modifications of the standard RBF kernel, widely regarded as

the best general purpose kernel due to its power and versatility. They provide an frame-

work enabling the incorporation of various type of prior-knowledge commonly available

as expert advice on the problem. The idea behind KE-RBF kernels is to preserve the

power and versatility of the standard RBF kernel, while allowing for the incorporation

of problem-specific prior-knowledge. They can be used with the existing types SVMs,

including all variants of SVCs and SVRs, with the same ease-of-use as the original

RBF kernel and without significantly increasing the computational complexity of the

optimization problem.

The objective in mind is to broaden the field of application of SVMs by enabling

their use in situations where SVMs are usually considered ineffective.
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4.1.1 Motivations

The main motivation behind the KE-RBF framework is to allow the use of the powerful

SVM+RBF combination in more realistic contexts than what is currently possible.

The SVM+RBF combination is one of the most widely used class of suppervised

learning algorithms. In particular, the nonlinear RBF kernel with adjustable kernel

bandwidth offers the versatility necessary to adapt to a wide variety of situations.

However, the volume of training data required to take advantage of nonlinear clas-

sifiers such as the SVM+RBF combination can be very high. Several previous stud-

ies [2, 62] suggest that linear methods, usually considered much less powerful, are often

a better choice than nonlinear methods when the available data is limited. Therefore,

the practical use of the SVM+RBF combination is severely restricted by the requirement

for quality training data in sufficient amounts.

In many real-life situations, training data is available only in limited quantities.

Meanwhile, specific expert advice about the problem is often available. In fact, the

“learning-by-example” paradigm which involves the creation of models from entirely

implicit knowledge is not a natural analogy of the way concepts are defined in real life.

For instance, histopathology textbooks describe a specific condition with text and a

small amount of micrographs of typical cases rather than a huge collection of example

micrographs covering possible positive and negative cases of the disease.

Accordingly, our objective is to enable a shift of paradigm towards a more prac-

tical use of SVMs: from an often unrealistic situation where lots of training data are

required to a more practical situation where a limited amount of data in addition to

some problem-specific advice is available.

4.1.2 Main features of the KE-RBF framework

The KE-RBF framework is able to deal with a large variety of problem-specific prior-

knowledge such as specific correlation patterns present in the problem, the pseudo-

periodicity or dominant frequencies of phenomena, or specific knowledge on regions

from the feature space (more precise definitions are given in Section 4.2). In contrast,

most of the previous works on the incorporation of prior-knowledge into SVMs deals with

domain-specific knowledge such as invariances which do not provide specific informations
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on the problem itself (see Chapter 3).

Another main characteristic of KE-RBF kernels is their affinity with small or biased

training sets. As pointed out during the review in Chapter 3, the existing methods deal-

ing with problem-specific knowledge are optimization-based approaches incorporating

the prior-knowledge as additional constraints. Unfortunately, this approach is not able

to yield a good solution when the original search space is inadequate due to the lack of

data. In comparison, a SVM+KE-RBF combination will adapt the search space to the

available prior-knowledge rather than just shift the optimum. gRBF kernels, a subtype

of KE-RBF kernels presented in Section 4.5 can even be used just with prior-knowledge

in the absence of any training data.

Finally, being a purely kernel-based approach, the KE-RBF framework has a number

of advantages in terms of ease of use. In particular, it is compatible with standard SVMs

and solvers without requiring modifications and it does not significantly increase the

complexity of the problem.

4.1.3 Outline

Section 4.2 gives a general overview of which type of KE-RBF kernel to use with which

type of prior knowledge. Then, the 3 different types of KE-RBF kernels are presented

in their respective sections: ξRBF kernels incorporating the prior-knowledge via a ded-

icated knowledge function in Section 4.3; pRBF kernels based on tensor products of an

RBF kernel with more specific kernels in Section 4.4; and gRBF kernels, a generaliza-

tion of the RBF kernel from Rn to P(Rn), in Section 4.5. We conclude the chapter on

a discussion on the complementary role of the prior-knowledge and the usual labeled

training data in Section 4.6.

A thorough empirical validation of the KE-RBF framework on several real-life and

synthetic problems is provided in Chapter 5.

This chapter uses the notations introduced in Chapter 2. In particular, X designates

the input space or feature space and Y ⊂ R the output or label space. We assume X ⊂ Rn

for some n ∈ N.
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4.2 Overview of the KE-RBF framework

The KE-RBF framework consists of 3 mathematically different types of modifications

of the standard RBF kernel and are able to deal with several different types of prior-

knowledge. Therefore, there are two natural angles of approach to the KE-RBF frame-

work: the mathematical nature of the kernel and the type of prior-knowledge involved.

4.2.1 Types of KE-RBF kernels

The modified RBF kernels fall into one of the following mathematical categories.

ξRBF kernels: they correspond to the product of the standard RBF kernel Krbf with a

function ξ containing the prior-knowledge i.e. Ka(x1, x2) = ξ(x1, x2)Krbf(x1, x2);

pRBF kernels: they are tensor products of the standard RBF kernel with another kernel

K having more characteristic properties (e.g. monotonicity) i.e. Ka(x1, x2) =

Krbf(x1,1, x2,1)×K(x1,2, x2,2) with x1 = (x1,2, x1,2) and x2 = (x2,2, x2,2).

gRBF kernels: they are a generalization of the standard RBF kernel from Rn × Rn to

P(Rn)×P(Rn), i.e. from points of Rn to sets of Rn.

4.2.2 Types of prior-knowledge

The prior-knowledge involved in the KE-RBF framework can be divided into two broad

categories: semi-global prior-knowledge influencing large regions of the feature space and

global prior-knowledge influencing the entire feature space.

4.2.2.1 Semi-global prior-knowledge

Two subtypes of semi-global prior-knowledge can be incorporated with the KE-RBF

framework.

Unlabeled regions X0 ⊂ X : they can be viewed as an indicative clustering of points in

X in order to underline their similarity, and do not require any explicit hypothesis

on the label space Y.

Labeled regions (X0, y0) ∈ P(X )×Y: they can be viewed as defining an average label

value for the points in the region.
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4.2.2.2 Global prior-knowledge

Four subtypes of global prior-knowledge are dealt with.

Monotonicity w.r.t. one or more feature: it refers to the increasing or decreasing

behavior of the label w.r.t. a feature. For instance, the price of wine bottles can

be considered as an increasing function of the age in years.

Pseudo-periodicity w.r.t. one or more features: it indicates that labels have a cyclic

behavior w.r.t. a feature. An example is air temperature and the day-night cycle.

Frequency decomposition w.r.t. one or more features: sometimes, more than one domi-

nant frequencies are involved. For instance air temperatures also follow a seasonal

cycle in addition to the day-night cycle and therefore correspond to the combina-

tion of at least 2 dominant frequencies.

Explicit correlation pattern between the label and a specific set of features: for instance,

explicit correlation patterns can be found between body volume and body mass

which are linearly correlated or between car speed and breaking distance which

are quadratically correlated.

4.2.3 Matrix representation of the KE-RBF framework

The matrix representation in Table 4.1 indicates which type of kernel can be used with

which type or prior-knowledge. The matching is not one-to-one and may be a bit

misleading: unlabeled regions and pseudo-periodicity which are seemingly unrelated

types of prior-knowledge are incorporated with the same kernel (ξRBF kernel), whereas

labeled regions are dealt with another kernel (gRBF kernel). Practical examples for the

use for each method and type of prior-knowledge are given in Chapter 5.

4.3 ξRBF kernel

ξRBF kernels correspond to the functional product of the standard RBF kernel with a

real-valued function ξ defined over X 2 and containing the prior-knowledge. The most
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ξRBF pRBF gRBF

semi-global
unlabeled regions ×

labeled regions ×

global
monotonicity ×

pseudo-periodicity ×
frequency decomposition ×

explicit correlation ×

Table 4.1: Matrix representation of the different types of KE-RBF kernels (top) with the
different types of prior-knowledge (left). Crosses indicate kernels that can be used with a
specific type of prior-knowledge.

generic expression of a ξRBF kernel is:

Ka(x1, x2) = ξ(x1, x2)Krbf(x1, x2) (4.1)

where ξ : X 2 → R is a symmetric function containing the prior-knowledge.

Assuming that the modified kernel Ka is a valid PD kernel, the idea is to alter the

notion of kernel distance in order to influence the separability of points according to the

prior-knowledge. On one hand, if the prior-knowledge suggests that two objects share

similarities, then the objects should be moved closer and the kernel distance decreased.

On the other hand, if it implies that those two objects are unrelated of dissimilar, the

objects should be moved further apart and the kernel distance increased.

If desired, the amount of prior-knowledge incorporated into the kernel can be con-

trolled with an additional parameter:

Ka(x1, x2) = (λ+ µξ(x1, x2))Krbf(x1, x2) (4.2)

where µ = 1 − λ ∈ [0, 1] controls the the amount of prior-knowledge (note that (4.1)

corresponds to the case µ = 1).

In practice, the additional parameter µ should be set according to the degree of

confidence regarding the prior-knowledge. µ = 1 is a good default choice when the prior-

knowledge comes from a reliable source. An empirical study on role of µ is available in

an application of this ξRBF kernel to the diagnosis of breast cancer from morphological

parameters of cell nuclei in Section 5.2.

The function ξ can be adapted to incorporate various forms of prior-knowledge.

In the following sections, we deal with different types of prior-knowledge: unlabeled
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regions of X without any explicit hypothesis on the label space Y in Section 4.3.1)

and the frequency decomposition of the labeling model w.r.t. one or several features

in Section 4.3.2. The latter can be a single pseudo-period or a combination of multiple

dominant frequencies.

For reference, we provide a slightly different approach to the kernels presented in

this section in [84].

4.3.1 Unlabeled regions

Unlabeled regions correspond to sets A ⊂ X of the input space without explicit hy-

pothesis regarding the label space Y. This type of prior-knowledge can be viewed as an

indicative clustering of the data points which emphasizes similarities and dissimilarities

between the objects.

First, a version dealing with crisp sets (standard mathematical sets) is presented in

Section 4.3.1.1. Then, the framework is extended to fuzzy sets in Section 4.3.1.2.

An application to digital histopathology using real medical data is given in Sec-

tion 5.2.

4.3.1.1 Crisp unlabeled regions

Let A ⊂ X be a subset (region) of the feature space. Let χ : X → {−1, 1} be an

indicator function for the set A such that:

χ(x) =


1 if x ∈ A

−1 if x /∈ A
(4.3)

The only restriction imposed on the set A is the existence of an indicator function. This

very loose restriction allows for the use of virtually any set with an analytical description.

We propose the following ξRBF kernel:

Ka(x1, x2) = ξ(x1, x2)Krbf(x1, x2) (4.4)
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where ξ : X 2 → [0, 1] containing the prior-knowledge is defined as follows:

ξ(x1, x2) =
χ(x1)χ(x2) + 1

2
(4.5)

We verify that Ka has the good properties, i.e. Ka is PD. This is a straightforward

consequence of the two following results on PD kernels.

Theorem 4.3.1.

Let K1 : X 2 → R and K2 : X 2 → R be PD, and λ ∈ R+. Then:

1. K1 +K2 is PD

2. K1 ×K2 is PD

3. K1 + λ is PD

4. λK1 is PD

Proof. All four kernels are symmetric. Thus, we only need to verify that their Gram ma-

trices are positive semi-definite. LetN ∈ R, (x1, x2, . . . , xN ) ∈ XN and (v1, v2, . . . , vN ) ∈

RN .

Proof of 1.

N∑
i=1

N∑
j=1

vivj(K1 +K2)(xi, xj)

=
N∑
i=1

N∑
j=1

vivj(K1(xi, xj) +K2(xi, xj))

=
N∑
i=1

N∑
j=1

vivjK1(xi, xj) +
N∑
i=1

N∑
j=1

vivjK2(xi, xj)

≥ 0 as the sum of two positive terms (K1 and K2 are PD)

Therefore K1 +K2 is PD.

Proof of 2.

The Gram matrix G2 = (K2(xi, xj))i,j=1...N is positive semi-definite. Therefore, there

is an N -by-N matrix M = (mi,j)i,j=1...N (we can for instance consider the Cholesky
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decomposition of G2) such that G2 = MMT . Then:

N∑
i=1

N∑
j=1

vivj(K1 ×K2)(xi, xj)

=
N∑
i=1

N∑
j=1

vivjK1(xi, xj)K2(xi, xj)

=
N∑
i=1

N∑
j=1

vivj(K1(xi, xj)
N∑
k=1

mi,kmk,j

=
N∑
k=1

N∑
i=1

N∑
j=1

vivj(K1(xi, xj)mi,kmk,j

=

N∑
k=1

 N∑
i=1

N∑
j=1

(vimi,k)(vjmk,j)K1(xi, xj)


≥ 0 as the sum of N positive terms (K1 is PD)

Therefore K1 ×K2 is PD.

Proof of 3.

N∑
i=1

N∑
j=1

vivjλ = λ

N∑
i=1

vi

N∑
j=1

vj

= λ

(
N∑
i=1

vi

)2

≥ 0

Therefore, (x1, x2) 7→ λ is PD and 3 is a corollary of 1.

In a similar fashion, 4 is a corollary of 2.

Theorem 4.3.2.

Let f : X → R.

Then:

K : X 2 → R

(x1, x2) 7→ f(x1)f(x2)

is PD.

Proof. K is symmetric. Again, we only need to verify that any Gram matrix is positive
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semi-definite. Let N ∈ R, (x1, x2, . . . , xN ) ∈ XN and (v1, v2, . . . , vN ) ∈ RN .

N∑
i=1

N∑
j=1

vivjK(xi, xj) =

N∑
i=1

N∑
j=1

vivjf(xi)f(xj)

=
N∑
i=1

vif(xi)
N∑
j=1

vjf(xj)

=

(
N∑
i=1

vif(xi)

)2

≥ 0

The ξRBF kernel Ka is PD as a direct consequence of the two previous results.

Theorem 4.3.3.

Ka is PD.

Proof. By construction, applying Theorem 4.3.1 and Theorem 4.3.2.

This result entails the existence of a RKHS Ha for Ka. Thus, the kernel distance

da in Ha between two points (x1, x2) ∈ X 2 can be expressed using Theorem 2.2.9 from

Chapter 2. By successive transformations, we get:

da(x1, x2)2 = Ka(x1, x1) +Ka(x2, x2)− 2Ka(x1, x2)

=
χ(x1)2 + 1

2
Krbf(x1, x1) +

χ(x2)2 + 1

2
Krbf(x2, x2)

− 2
χ(x1)χ(x2) + 1

2
Krbf(x1, x2)

=
1

2

[
(χ(x1)2 + 1) + (χ(x2)2 + 1)− 2(χ(x1)χ(x2) + 1)Krbf(x1, x2)

]
=

1

2

[
(χ(x1)2 + 1) + (χ(x2)2 + 1)− 2(χ(x1)χ(x2) + 1)

+2(χ(x1)χ(x2) + 1)− 2(χ(x1)χ(x2) + 1)Krbf(x1, x2)]

=
1

2

[
χ(x1)2 + χ(x2)2 − 2χ(x1)χ(x2)

]
+

1

2
[2(χ(x1)χ(x2) + 1)− 2(χ(x1)χ(x2) + 1)Krbf(x1, x2)]

=
1

2
(χ(x1)− χ(x2))2 +

1

2
(χ(x1)χ(x2) + 1)(2− 2Krbf(x1, x2))

=
1

2
(χ(x1)− χ(x2))2
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+
1

2
(χ(x1)χ(x2) + 1)(Krbf(x1, x1) +Krbf(x2, x2)− 2Krbf(x1, x2))

=
1

2
(χ(x1)− χ(x2))2 +

1

2
(χ(x1)χ(x2) + 1)drbf(x1, x2)2 (4.6)

where drbf(x1, x2) is the standard RBF kernel distance. Then, by applying a case dis-

junction, (4.6) becomes:

da(x1, x2)2

=


drbf(x1, x2)2 if (x1, x2) ∈ A2 ∪ {A2

2 if (x1, x2) ∈ A× {A ∪ {A×A

=


drbf(x1, x2)2 if (x1, x2) ∈ A2 ∪ {A2

(sup drbf)
2 if (x1, x2) ∈ A× {A ∪ {A×A

(4.7)

where sup drbf = sup(x1,x2)∈X 2 drbf(x1, x2) =
√

2 is the upper bound of the RBF kernel

distance.

Therefore, the kernel distance associated to Ka increases when the two points x1

and x2 are in different sets, increasing the separability of A and {A in the kernel space.

However, this sudden increase to the upper-bound value of the RBF kernel distance

may feel too sharp. To solve this problem, we add a parameter µ ∈ [0, 1] to control the

amount of prior-knowledge incorporated into the ξRBF kernel from none for µ = 0 to

the maximum for µ = 1. With this new control parameter, (4.4) becomes:

Ka(x1, x2) = (λ+ µξ(x1, x2))Krbf(x1, x2) (4.8)

with λ = 1− µ ∈ [0, 1].

Remark 4.3.4. With µ = 0, (4.8) becomes the standard RBF kernel. The previous

expression (4.4) is obtained when µ = 1.

Ka is still PD as a direct consequence of Theorem 4.3.1 and Theorem 4.3.2. There-

fore, the notion kernel distance da between two points (x1, x2) ∈ X 2 is valid. By suc-

cessive transformations of its new expression:

da(x1, x2)2
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= Ka(x1, x1) +Ka(x2, x2)− 2Ka(x1, x2)

= (λ+ µ
χ(x1)2 + 1

2
)Krbf(x1, x1) + (λ+ µ

χ(x2)2 + 1

2
)Krbf(x2, x2)

− 2(λ+ µ
χ(x1)χ(x2) + 1

2
)Krbf(x1, x2)

= λ [Krbf(x1, x1) +Krbf(x2, x2)− 2Krbf(x1, x2)]

+
µ

2

[
(χ(x1)2 + 1)Krbf(x1, x1) + (χ(x2)2 + 1)Krbf(x2, x2)− 2

χ(x1)χ(x2) + 1

2

]
= λdrbf(x1, x2)2 +

µ

2

[
(χ(x1)2 + 1) + (χ(x2)2 + 1)− 2

χ(x1)χ(x2) + 1

2

]
(4.9)

then, by applying the same sequence of transformations as in (4.6):

da(x1, x2)2

= λdrbf(x1, x2)2 +
µ

2
(χ(x1)− χ(x2))2 +

µ

2
(χ(x1)χ(x2) + 1)drbf(x1, x2)2

=
[
λ+

µ

2
(χ(x1)χ(x2) + 1)

]
drbf(x1, x2)2 +

µ

2
(χ(x1)− χ(x2))2

=


(λ+ µ)drbf(x1, x2)2 if (x1, x2) ∈ A2 ∪ {A2

λdrbf(x1, x2)2 + 2µ if (x1, x2) ∈ A× {A ∪ {A×A

=


drbf(x1, x2)2 if (x1, x2) ∈ A2 ∪ {A2

(1− µ)drbf(x1, x2)2 + µ(sup drbf)
2 if (x1, x2) ∈ A× {A ∪ {A×A

(4.10)

Figure 4.1 shows plots of the ξRBF kernel distance da(x1, x2) for n = 1, A = [a, b]

and different values of the parameter µ ∈ [0, 1]. The different possible relative positions

of x1 and x2 are covered. We can observe that when the two points are in the same

set (A or {A), the kernel distance between them is the standard RBF kernel distance.

However, when they are in different sets, the kernel distance increases by an amount

controllable via the parameter µ: from no increase when µ = 0 to an increase to the

maximal RBF kernel distance sup da =
√

2 when µ = 1.

Remark 4.3.5. One may rightfully point out that instead of the expression of ξ given in

(4.5), we may use the following simpler and equivalent expression:
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Figure 4.1: ξRBF kernel distance da(x1, x2) for n = 1, A = [a, b] and different values of
the parameter µ. Black plots correspond to µ = 0 i.e. the standard RBF kernel, blue plots
to µ = 0.5 and red plots to µ = 1.

ξ(x1, x2) =


1 if (x1, x2) ∈ A2 ∪ {A2

0 if (x1, x2) ∈ A× {A ∪ {A×A
(4.11)

The reason behind this seemingly unnatural choice is that it extends well to the case of

fuzzy sets elaborated in Section 4.3.1.2.

4.3.1.2 Fuzzy unlabeled regions

The above ξRBF kernel can sometimes prove impractical when the boundaries of the

unlabeled regions are not precisely known. Instead, the prior-knowledge may correspond

to a blur idea of them. Therefore, we propose an extension of the previous method

allowing fuzzy set definitions, i.e. with a continuous indicator function χ : X → [−1, 1].

The positive-definiteness of Ka still holds as a consequence of Theorem 4.3.1 and

Theorem 4.3.2. The reformulation (4.10) of the kernel distance da remains valid as well.

Figure 4.2 shows a fuzzified version of the illustration in Figure 4.1 with crisp sets. We

can see that the previously discontinuous transitions are now smooth.

4.3.2 Frequency decomposition

Information about the frequency decomposition of the model is sometimes available.

The ideal case is a strictly periodic phenomenon, i.e. which has a true period P w.r.t. a
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Figure 4.2: (a) fuzzy indicator function and (b)-(d) corresponding ξRBF kernel distance
da(x1, x2) for n = 1. Different values of µ are used: black plots correspond to µ = 0 i.e.
the standard RBF kernel, blue plots to µ = 0.5 and red plots to µ = 1.
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specific feature but such a case does not offer much practical interest from the machine

learning standpoint.

In practice, a phenomenon can have a dominant frequency or pseudo-period without

being strictly periodic. We propose a type of ξRBF kernel addressing this case in

Section 4.3.2.1. In Section 4.3.2.2, we propose an extension to the combination of several

dominant frequencies.

We illustrate the use of such kernels with an application to meteorological predictions

in Section 5.3 and an experiment using synthetic data in Section 5.4.

4.3.2.1 Pseudo-period

In this section, the decision model is expected to have a pseudo-period of P w.r.t. to

the j-th component of the feature vector. To address this case, we propose the following

ξRBF kernel:

Ka(x1, x2) = ξ(x1, x2)Krbf(x1, x2) (4.12)

with ξ : X 2 → [0, 1] a function containing the prior-knowledge defined as:

ξ(x1, x2) =
cos
(

2π
P (x1,j − x2,j)

)
+ 1

2
(4.13)

where x1,j (resp. x2,j) is the j-th component of x1 (resp. x2).

As in Section 4.3.1.1, we can introduce a parameter µ ∈ [0, 1] controlling the amount

of prior-knowledge incorporated into Ka. Thus, (4.12) becomes:

Ka(x1, x2) = (λ+ µξ(x1, x2))Krbf(x1, x2) (4.14)

with λ = 1− µ ∈ [0, 1].

First, we verify that Ka has the properties of a “good” kernel.

Theorem 4.3.6.

Ka is PD.

Proof. By the application of a well-known trigonometric formula, ξ can be expanded in
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the following fashion:

ξ(x1, x2) =
cos
(

2π
P x1,j

)
cos
(

2π
P x2,j

)
+ sin

(
2π
P x1,j

)
sin
(

2π
P x2,j

)
+ 1

2
(4.15)

Then, Theorem 4.3.1 and Theorem 4.3.2 entail that ξ is PD as a sum of PD kernels. Ka

is in turn PD as the product of PD kernels.

Then, the kernel distance da associated to Ka can be expressed applying Theo-

rem 2.2.9 from Chapter 2.

da(x1, x2)2

= Ka(x1, x1) +Ka(x2, x2)− 2Ka(x1, x2)

= (λ+ µ
cos
(

2π
P (x1,j − x1,j)

)
+ 1

2
)Krbf(x1, x1)

+ (λ+ µ
cos
(

2π
P (x2,j − x2,j)

)
+ 1

2
)Krbf(x2, x2)

− 2(λ+ µ
cos
(

2π
P (x1,j − x2,j)

)
+ 1

2
)Krbf(x1, x2)

= (λ+ µ)Krbf(x1, x1) + (λ+ µ)Krbf(x2, x2)

− 2(λ+ µ
cos
(

2π
P (x1,j − x2,j)

)
+ 1

2
)Krbf(x1, x2)

= λ [Krbf(x1, x1) +Krbf(x2, x2)− 2Krbf(x1, x2)]

+ µ

[
Krbf(x1, x1) +Krbf(x2, x2)−

(
cos

(
2π

P
(x1,j − x2,j)

)
+ 1

)
Krbf(x1, x2)

]
= λdrbf(x1, x2)2 + µ

[
2−

(
cos

(
2π

P
(x1,j − x2,j)

)
+ 1

)
Krbf(x1, x2)

]
(4.16)

where drbf is the standard RBF kernel distance.

Figure 4.3 shows plots of the kernel distance according to the relative position of x1

and x2 for n = 1 and different values of the parameter µ. We can observe a pseudo-

periodic increase in the ξRBF kernel distance compared to the standard RBF distance

(µ = 0) in addition to the exponential increase proper to the RBF kernel. Therefore,

objects which are separated by a whole number of pseudo-periods are more strongly

related than objects separated by a non-whole number of pseudo-periods. The expo-

nential increase adjustable via the RBF kernel bandwidth parameter γ accounts for the

fact that the labels are pseudo-periodic instead of strictly periodic. In this way, objects

which at a close distance in X influence each other more the objects which are far, as
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a standard RBF kernel would do. If the labels were strictly periodic, γ = 0 yielding a

infinite-bandwidth kernel would be appropriate. The extent of the modifications can be

controlled by tuning µ.

x1 − 2P x1 − P x1 x1+P x1+2P
0

1

1.41

x2

d
a
(x

1
,x

2
)

Figure 4.3: ξRBF kernel distance da(x1, x2) for n = 1 and a pseudo-period P . Different
values of µ are used: black plots correspond to µ = 0 i.e. the standard RBF kernel, blue
plots to µ = 0.5 and red plots to µ = 1. Vertical dashed lines are separated by a pseudo-
period P .

4.3.2.2 Multiple frequencies

In this section, we propose an extension of the ξRBF kernel presented in Section 4.3.2.1

to the case when more than a single dominant label frequency is known a priori. This

is for instance the case when multiple cycles of different pseudo-periods combine, e.g. a

shorter day-and-night cycle (P = 1 day) with a longer seasonal cycle (P = 365.25 days).

Let {fi}i=1...N0 be the N0 different frequencies in question and {Pi = 1
fi
}i=1...N0 the

corresponding pseudo-periods. We propose the following extension of the ξRBF kernel

(4.12):

Ka(x1, x2) =

(
λ+ µ

N0∏
i=1

ξi(x1, x2)

)
Krbf(x1, x2) (4.17)

with µ = 1− λ a parameter controlling the amount of prior-knowledge and {ξi}i=1...N0

a family of functions similar to (4.13) defined for each frequency as:

ξi(x1, x2) =
cos
(

2π
Pi

(x1,j − x2,j)
)

+ 1

2
=

cos(2πfi(x1,j − x2,j)) + 1

2
(4.18)
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where x1,j (resp. x2,j) is the j-th component of x1 (resp. x2).

Once more, Ka is a PD kernel with a valid RKHS.

Theorem 4.3.7.

Ka is PD.

Proof. Similar to the proof of Theorem 4.3.6

Following a sequence of transformations similar to (4.16), the associated kernel dis-

tance da can be expressed as:

da(x1, x2)2

= Ka(x1, x1) +Ka(x2, x2)− 2Ka(x1, x2)

= (λ+ µ

N0∏
i=1

cos(2πfi(x1,j − x1,j)) + 1

2
)Krbf(x1, x1)

+ (λ+ µ

N0∏
i=1

cos(2πfi(x2,j − x2,j)) + 1

2
)Krbf(x2, x2)

− 2(λ+ µ

N0∏
i=1

cos(2πfi(x1,j − x2,j)) + 1

2
))Krbf(x1, x2)

= (λ+ µ)Krbf(x1, x1) + (λ+ µ)Krbf(x2, x2)

− 2(λ+ µ

N0∏
i=1

cos(2πfi(x1,j − x2,j)) + 1

2
)Krbf(x1, x2)

= λ [Krbf(x1, x1) +Krbf(x2, x2)− 2Krbf(x1, x2)]

+ µ

[
Krbf(x1, x1) +Krbf(x2, x2)− 2

(
N0∏
i=1

cos(2πfi(x1,j − x2,j)) + 1

2

)
Krbf(x1, x2)

]

= λdrbf(x1, x2)2 + 2µ

[
1−

(
N0∏
i=1

cos(2πfi(x1,j − x2,j)) + 1

2

)
Krbf(x1, x2)

]
(4.19)

where drbf is the standard RBF kernel distance.

Figure 4.4 shows a plot of da for the case n = 1, different values of µ and two

arbitrary frequencies f1 < f2 (i.e. P1 > P2). The kernel distance between two objects

increases compared to the standard RBF kernel distance (µ = 0). In particular, it is

close to drbf only when x1 and x2 are separated by a whole number of both pseudo-

periods and significantly larger when the distance separating x1 and x2 is not a whole

number of pseudo-periods for either one of the pseudo-periods.
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Figure 4.4: ξRBF kernel distance da(x1, x2) for n = 1 and two pseudo-periods P1 > P2.
The interval between dashed lines is equal to P1 and the interval between dotted lines is
equal to P2. Different values of µ are used: black plots correspond to µ = 0 i.e. the standard
RBF kernel, blue plots to µ = 0.5 and red plots to µ = 1.

Remark 4.3.8. One may suggest to combine the different frequencies additively instead

of multiplicatively, i.e. with the following expression for Ka instead of (4.17):

Ka(x1, x2) =

(
λ+ µ

N0∑
i=1

ξi(x1, x2)

)
Krbf(x1, x2) (4.20)

This kernel is also PD and the kernel distance would become (we leave the details

of the transformations to the reader):

da(x1, x2)2

= λdrbf(x1, x2)2 + 2µ

[
1−

(
N0∑
i=1

cos(2πfi(x1,j − x2,j)) + 1

2

)
Krbf(x1, x2)

] (4.21)

Figure 4.5 plots the multiplicative and the additive versions of this kernel distance

for the case n = 1 and µ = 1. The deviation from the standard RBF kernel is more

important with the multiplicative version. More specifically, with the multiplicative

version, the objects need to be separated by a whole number of both pseudo-periods in

order to be close from each other in the the feature space, whereas with the additive

version, a whole number of either one of the pseudo-period will suffice. The latter is

undesirable as it may introduce dependence between data instances that should not be

related.

The following example illustrates why you should need a whole number of both
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Figure 4.5: Comparison of the ξRBF kernel distance da(x1, x2) for n = 1, P1 < P2 between
the multiplicative version (4.21) and the additive version (4.16) of the ξRBF kernel. The
black plot corresponds to the standard RBF (or µ = 0 with either versions), the blue plot
to the multiplicative version (µ = 1) and the red plot to the additive version (µ = 1).

pseudo-periods for instances to be closely related. The atmospheric temperature in

London follow the cycle of seasons (pseudo-period of 356.25 days) and the diurnal cycle

(pseudo-period of 1 day). The temperature recorded on August 1st 2005 at 2:20PM

(21◦C)1 is largely different from the temperature on February 1st 2005 at 2:20PM (9◦C).

The temperature on August 1st 2005 at 2:20PM (21◦C) is also largely different from the

temperature on August 1st 2005 at 2:20AM (15◦C). In comparison, the temperature on

August 1st 2005 at 2:20PM (21◦C) is fairly close to the temperature on August 1st 2006

at 2:20PM (20◦C).

For a more systematic validation, the two versions of the kernel are compared in

an empirical study in Section 5.4 which confirms the superiority of the multiplicative

framework.

4.4 pRBF kernel

Partially RBF kernels, or pRBF kernels, are tensor products of a standard RBF kernel

with another non-RBF kernel.

Often, one or more feature may have explicitly identifiable implications in terms

of output labels if taken alone. For instance, a feature may be expected to have a

specific correlation pattern with the label, such as “linear” correlation (e.g. acceleration

1temperatures according to actual records provided by http://www.wunderground.com
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to force), “quadratic” correlation (e.g. speed to friction) or “cubic” correlation (e.g.

dimensions to weight).

The pRBF kernels, by using more specific kernels only for a determined set of fea-

tures and by using the RBF kernel for the remaining ones enables to incorporate the

specific correlation patterns only with the relevant features while making no particular

assumptions for the rest of the features. Under certain conditions specified by Theo-

rem 4.4.6, a pRBF kernel not only incorporates the prior-knowledge into the SVMs but

also guarantees that the solutions will have these mathematical properties.

4.4.1 Definition and properties

A pRBF kernel is defined as follows.

Definition 4.4.1. pRBF kernel

Let 1 ≤ m ≤ n− 1. A pRBF kernel over Rn is a function:

Ka = Krbf ⊗K (4.22)

where Krbf is an RBF kernel over Rn−m, K is a PD kernel over Rm and ⊗ is the tensor

product.

Or equivalently:

Ka : Rn × Rn → R

(x1, x2) 7→ Krbf(x1,1, x2,1)×K(x1,2, x2,2)

with x1 = (x1,1, x1,2) ∈ Rn−m × Rm and x2 = (x2,1, x2,2) ∈ Rn−m × Rm.

Remark 4.4.2. The tensor product used in the definition is the tensor product of

kernel functions and not the tensor product of the kernel Gram matrices.

Remark 4.4.3. The combination of multiple kernels often referred to as as “multiple

kernel learning” has been proposed in several anterior works and mainly linear combi-

nations of different basic kernels [3, 7, 74]. The main idea is to optimize the coefficients

of the linear combination during the learning phase. Tensor products have also been

used in other works [30, 91], usually to combine data of a heterogeneous nature. Neither
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of the approaches are motivated by the incorporation of additional prior-knowledge.

The set of PD kernels is closed under the tensor products of kernels.

Theorem 4.4.4. Tensor product of PD kernels

If K1 : X 2
1 → R and K2 : X 2

2 → R are PD kernels, then K = K1⊗K2 is a PD kernel

over X1 ×X2.

Proof. We define:

K ′1 : (X1 ×X2)2 → R

((x1,1, x1,2), (x2,1, x2,2)) 7→ K1(x1,1, x2,1)

and:

K ′2 : (X1 ×X2)2 → R

((x1,1, x1,2), (x2,1, x2,2)) 7→ K2(x1,2, x2,2)

Then K1 ⊗K2 = K ′1 ×K ′2 is PD by Theorem 4.3.1.

Theorem 4.4.5.

A pRBF kernel is a PD kernel.

Proof. Corollary of Theorem 4.4.4.

Before presenting our main result on pRBF kernels, lets first recall a notation in-

troduced in Chapter 2. Given a PD kernel K over X and x ∈ X , Kx : X → R is the

function defined as:

∀t ∈ X , Kx(t) = K(x, t) = K(t, x) (4.23)

Theorem 4.4.6.

Let E a vector field over R, K be a PD kernel over Rm such that {Kx|x ∈ Rm} ⊂ E,

m < n, S = {x1, . . . xN} ∈ (Rn)N , Ω : R → R strictly increasing, λ > 0 and Λ : RN →

R.

Let:

Ka : (Rn−m × Rm)2 → R

((x1,1, x2,1), (x1,2, x2,2)) 7→ Krbf(x1,1, x2,1)K(x1,2, x2,2)
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be a pRBF kernel over Rn with Ha its RKHS.

If f̂ : Rn−m × Rm → R is a solution of the optimization problem:

argmin
f∈Ha

Λ(f(x1), . . . , f(xN )) + λΩ(‖f‖Ha) (4.24)

then ∀x′ ∈ Rn−m, f̂x′ ∈ E where:

f̂x′ : Rm → R

x 7→ f̂(x′, x)

(4.25)

Theorem 4.4.6 has a rather complicated formulation but its implications are simple to

understand. All SVMs fit the formulation of the optimization problem (4.24). Therefore,

in plain words, Theorem 4.4.6 implies that the properties of the non-RBF portion of the

kernel pRBF kernel will be inherited by the labeling model. A graphical illustration of

Theorem 4.4.6 is later given in Figure 4.6.

Proof. The optimization problem (4.24) satisfies the hypothesis of the representer the-

orem (Theorem 2.2.23). Therefore there exist (α1, . . . , αN ) ∈ RN such that:

f̂ =
N∑
i=1

αiKaxi =
N∑
i=1

αiKrbfxi ⊗Kxi (4.26)

Then, for x′ ∈ Rn−m:

f̂x′ =

N∑
i=1

αiKrbf(xi, x
′)Kxi (4.27)

Since αiKrbf(xi, x
′) ∈ R and Kxi ∈ E, (4.27) is a linear combination of terms belonging

to E. E being a real vector space, this completes the proof.

Remark 4.4.7. The reader may raise the question why a direct sum Krbf ⊕ K is not

used instead of the tensor product Krbf ⊗K in Definition 4.4.1. There are at least two

reasons for this choice.

The first reason in theoretical. With a direct sum, Theorem 4.4.6 is not valid anymore

(although it would work with affine spaces instead of vector spaces). In particular, results

in relation with the common types of prior knowledge presented in Section 4.4.2 would
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not be valid anymore.

The second reason is practical. Using a direct sum creates the question of the

relative weights attributed to the RBF and non-RBF parts of the kernel, i.e. Ka =

λKrbf ⊕ (1− λ)K which introduces an additional learning parameter making the use of

pRBF kernel much less practical.

4.4.2 Polynomial and monomial correlation

In this section, we investigate the use of monomials and polynomials in order to incor-

porate specific prior-knowledge into pRBF kernels. Practical cases corresponding to this

situation are not rare as described in the introduction of Section 4.4 or as shown in the

example based on real biological data in Section 5.5.

First, lets introduce a few notations.

Definition 4.4.8. Real polynomial functions

Let n ∈ N and N ∈ N.

• Rn[x] = {
∑n

i=0 pix
i|∀i, pi ∈ R} is the set of polynomial functions in x of degree at

most n with coefficients in R.

• R[x] =
⋃∞
i=0 Ri[x] is the set of polynomial functions in x with coefficients in R.

• Rn[x1, . . . , xN ] = {
∑

i1+...+iN≤n pi1,...,iN
∏N
k=1 x

ik
k |∀i1 + . . .+ iN ≤ n, pi1,...,iN ∈ R}

is the set of multivariate polynomial functions in x1, . . . , xN of degree at most n

with coefficients in R.

• R[x1, . . . , xN ] =
⋃∞
i=0 Ri[x1, . . . , xN ] is the set of multivariate polynomial functions

in x1, . . . , xN with coefficients in R.

Remark 4.4.9. We make an abuse of notations by using the polynomial expressions to

designate the corresponding polynomial functions.

The above structures are vector spaces over R. Therefore, Theorem 4.4.6 is applicable

when the non-RBF portion of the kernel is a univariate or multivariate polynomial.

However, most of the commonly available prior-knowledge on feature-label correla-

tion patterns translate well into relations involving simple monomials rather than more

complex polynomials.
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For instance, knowing that the label is linearly (e.g. surface to price of a property

in real-estate), quadratically (e.g. speed to energy in physics) or cubically (e.g. radius

to volume in geometry) correlated with a specific feature xi0 requires the model f̂ to be

a univariate monomial of corresponding degree w.r.t. to xi0 .

Multivariate monomials are also sufficient for more elaborate correlations involving

several features (e.g. weight is the product of density and volume). Hence, pRBF kernels

should mainly be used with monomial expressions rather than polynomial expressions.

Definition 4.4.10. Real monomial functions

Let n ∈ N and N ∈ N.

• mRn[x] = {pixi|i ∈ J0, nK∧ pi ∈ R} is the set of monomial functions in x of degree

at most n with coefficients in R.

• mR[x] =
⋃∞
i=0mRi[x] is the set of monomial functions in x with coefficients in R.

• mRn[x1, . . . , xN ] = {pi1,...,iN
∏N
k=1 x

ik
k |i1 + . . .+ iN ≤ n∧ pi1,...,iN ∈ R} is the set of

multivariate monomial functions in x1, . . . , xN of degree at most n with coefficients

in R.

• mR[x1, . . . , xN ] =
⋃∞
i=0mRi[x1, . . . , xN ] is the set of multivariate monomial func-

tions in x1, . . . , xN with coefficients in R.

Unfortunately, those structures are not vector spaces over R. On one hand, mRn[x]

and mRn[x1, . . . , xN ] are not vector spaces since they do not contain 0 (the neutral

element of the addition). On the other hand, mR[x] and mR[x1, . . . , xN ] are not vector

spaces since they contain 1 and x but not 1+x. As a consequence, Theorem 4.4.6 cannot

be applied to these structures.

Fortunately, this problem can be circumvented in the following fashion.

Definition 4.4.11. Real monomial functions of degree exactly n

Let n, n1, . . . , nN and N be elements of N.

• eRn[x] = {pxn|p ∈ R∗} is the set of monomial functions in x of degree exactly n

with coefficients in R.
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• eRn1,...,nN [x1, . . . , xN ] = {p
∏N
k=1 x

nk
k |p ∈ R∗} is the set of multivariate monomial

functions in x1, . . . , xN of respective partial-degrees exactly n1, . . . , nN with coeffi-

cients in R.

Note that for n ≥ 0, eRn[x] and eRn[x1, . . . , xN ] do not contain 0 and are therefore

not vector spaces yet. This can be solved by simply adding 0 to the respective structures

as in the following rather trivial theorem.

Theorem 4.4.12.

Let n, n1, . . . , nN and N be elements of N.

eRn[x] ∪ {0}, and eRn1,...,nN [x1, . . . , xN ] ∪ {0} are vector spaces over R.

Proof. eRn[x]∪{0} ⊂ Rn[x] and Rn[x] is a vector space over R. It is therefore sufficient

to prove that eRn[x] ∪ {0} is a vector subspace of Rn[x], i.e. that it is non-empty and

stable by linear combination.

0 ∈ eRn[x] ∪ {0}, thus eRn[x] ∪ {0} is not empty. Let λ ∈ R and (P,Q) ∈ (eRn[x] ∪

{0})2 i.e. P = pxn with p ∈ R and Q = qxn with q ∈ R.

• λ.P = λ.pxn = (λp)xn with (λp) ∈ R, therefore λ.P ∈ eRn[x] ∪ {0}.

• P +Q = pxn + qxn = (p+ q)xn with (p+ q) ∈ R, therefore P +Q ∈ eRn[x]∪ {0}.

Therefore eRn[x]∪ {0} is closed w.r.t. the monomial sum and the scalar multiplica-

tion and eRn[x] ∪ {0} is a vector space as a vector subspace of Rn[x].

The proof for eRn1,...,nN [x1, . . . , xN ] ∪ {0} can be done in a similar fashion.

The consequence of Theorem 4.4.6 and Theorem 4.4.12 is that if the non-RBF portion

of a pRBF kernel is a univariate or multivariate monomial w.r.t. to certain features,

then the resulting labeling model f̂ is also a monomial of the same degree w.r.t. the

same features (including the degenerate case its coefficient is equal to 0).

Figure 4.6 proposes a graphical illustration of regression with the ε-SVR+pRBF

combination. The feature space is 2-dimensional with features f1 and f2. In this exam-

ple, the label has a quadratic correlation w.r.t. f1. When the standard RBF kernel is

used (Figure 4.6a), the resulting decision model fits the training data (white dots) but

not the test data (black dots). Using a pRBF kernel with monomials in f1 (Figure 4.6b
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to Figure 4.6d) causes the decision model to have the properties predicted by Theo-

rem 4.4.6 as shown by the level curves w.r.t. f2. Most importantly the pRBF kernel

using the monomial f2
1 , i.e. making the correct assumption about the model, can label

all the test data correctly including the data out of the range of the training data. Such

a generalizability of the model outside of the range of the training data is usually not

expected from SVMs.

(a) RBF kernel (b) pRBF kernel (f1)

(c) pRBF kernel (f2
1 – correct assumption) (d) pRBF kernel (f3

1 )

Figure 4.6: Examples of regression with the ε-SVR+pRBF combination. The data is
3-dimensional with 2 features (f1, f2) and 1 output label y. For f2 fixed, y is proportional
to f21 , i.e. the correlation between f1 and y is quadratic. The training data points are
indicated with white dots and the test data points with black dots. The red curves drawn
on the decision surface are level curves w.r.t. f2. Each graph corresponds to a different
monomial expression: f1 for (b), f21 for (c) and f31 for (d). (a) corresponds to the standard
RBF kernel.

Remark 4.4.13. The framework can be extended to non-integer exponents in order to
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take into account other types of correlations such as roots (with n = 1
2 for square roots,

n = 1
3 cube roots. . . ). Corresponding precautions must then be taken regarding the

domains of definition of features.

4.4.3 Monotonic correlation

pRBF kernels can also deal with monotonicity w.r.t. specific features, a weaker and

more common form of prior-knowledge.

For n ∈ N−2N (i.e. n odd), the set eRn[x] of univariate monomials of degree exactly

n presented in Definition 4.4.11 only contains strictly monotonic functions. Therefore

eRn[x] ∪ {0} contains only monotonic functions for n ∈ N − 2N. In a similar way,

multivariate monomials are also monotonic w.r.t. the variables for which the partial

degree is odd (e.g. the degree of x2 in P = x2
1x

3
2 is 3 ∈ N − 2N, hence P is monotonic

w.r.t. x2).

Without any additional knowledge, it is therefore reasonable to use monomials of

degree 1 (i.e. linear) for the features w.r.t. which we want the labeling model to be

monotonic.

4.5 gRBF kernel

The gRBF kernel, standing for “generalized RBF kernel”, is a generalization of the

standard RBF kernel from Rn × Rn → R to P(Rn) × P(Rn) → R, i.e. from points

of the feature space to sets of the feature space. The gRBF kernel treats data and

prior-knowledge without distinction.

The gRBF kernel can be used to incorporate prior-knowledge about labeled regions

of the feature space, i.e. make hypothesis about the labels of specific regions of the

feature space. A labeled set can be interpreted as an average label value over a region

and can be used to compensate for missing data.

Visual examples are given throughout the section to illustrate the different steps and

notions involved in the utilization of the gRBF kernel. An example of application of the

gRBF kernel on real-life data is proposed in Section 5.6.

Section 4.5.1 provides a formal definition for the gRBF kernel. Section 4.5.2 describes

how to create a single training set from labeled data points and prior-knowledge while
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dealing with eventual conflicts. Section 4.5.3 presents the new technical challenges asso-

ciated to the gRBF kernel and how to deal with them. Finally, Section 4.5.4 summarizes

the workflow associated to the use of the gRBF kernel.

4.5.1 Definitions

Formally, the gRBF kernel is obtained by replacing the usual Euclidean distance between

elements of Rn in the expression of standard RBF kernel with a distance between sets

of Rn.

Definition 4.5.1. Set distance

The distance d(A,B) between the sets A ∈ P(Rn) and B ∈ P(Rn) is defined as:

d(A,B) =


infa∈A∧b∈B ‖a− b‖2 if A 6= ∅ and B 6= ∅

∞ otherwise

(4.28)

Note that the set distance is a well-defined notion. Indeed, if A 6= ∅ and B 6= ∅,

then {‖a− b‖2|a ∈ A∧ b ∈ B} is a non-empty subset of R with 0 as a lower bound, and

therefore has a unique infimum.

Remark 4.5.2. The set distance is not a metric. In particular, it does not satisfy the

triangular inequality. For instance, with X = R: d({1}, {4}) = 3, d({1}, [2, 3]) = 1, and

d([2, 3], {4}) = 1. Therefore d({1}, {4}) > d({1}, [2, 3])+d([2, 3], {4}), which contradicts

the triangular inequality.

Definition 4.5.3. gRBF kernel

The gRBF kernel with parameter γ > 0 is the function:

Kgrbf : P(Rn)2 → R

(A,B) 7→ exp(−γd(A,B)2)

4.5.2 Dataset creation

The gRBF kernel deals with data points and prior-knowledge together as elements of

P(Rn) without a particular distinction. This section describes the creation of the dataset
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from the two heterogeneous types of input.

First, Section 4.5.2.1 illustrates how commonly available prior-knowledge can lead to

the creation of labeled sets. Then, Section 4.5.2.2 describes how the usual data points

and the labeled sets originating from the prior-knowledge are combined together into a

single dataset. The contradictions occurring between data points and prior-knowledge

can sometimes produce adverse effects. Section 4.5.2.3 proposes a way to deal with such

conflicts during the creation of the dataset.

4.5.2.1 Using labeled sets as prior-knowledge

A labeled region is a pair (X0, y0) where X0 ∈ P(X) and y0 ∈ R. Therefore, defining

a labeled region requires 2 types of information: a subset X0 of X and a label value

y0. The region X0 of the feature space is typically derived from prior-knowledge about

bounds and ranges on specific features. The label y0 can be viewed an average label

value for the data points within this regions. In this regard, labeled regions correspond

to a more elaborate type of prior-knowledge than the unlabeled regions presented in

Section 4.3.1 which do not contain any hypothesis on the label space. Defining labeled

sets is particularly useful in order to improve the quality of the decision model over

regions where data is scare or entirely missing.

The most common way of obtaining labeled regions is via external advice from

an expert. For instance, in a simplistic computer vision example using morphological

features to distinguish apples from bananas, a botanist might provide the information

that an object having a total length l ≥ 20cm is systematically in the banana-class

(with label +1) and never in the apple-class (with label −1). This results in a labeled

set (O1,+1) where O1 is the half-space for which l ≥ 20cm. In another regression

example involving the prediction of daily rainfall in the Indian city of Bhopal, past

monthly records indicate that virtually no rainfall is expected from January to April.

This suggests the construction of the labeled set (O2, 0) where O2 is the set of dates

for which the value of the “month” feature is either “January”, “February”, “March”

or “April”.

The gRBF kernel enables training from prior-knowledge only without any training

data points. Indeed, the gRBF kernels treat data points and labeled regions without

distinction, therefore, prior-knowledge constitutes valid training data. Unlike the ξRBF
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kernels with unlabeled regions from Section 4.3.1 which need at least a training data

point for every class, gRBF kernels can be used with labeled sets alone. Figure 4.7

provides a visual illustration of a binary classification and a scalar regression performed

without training data points.

Practical examples of gRBF kernels using different types of labeled regions are avail-

able in Section 5.6.

4.5.2.2 Combining data and prior-knowledge

The next task consists in creating a single dataset by merging the following two hetero-

geneous types of input:

• the usual labeled training data set Sd = (xi, yi)i=1,...,Nd ∈ (Rn×R)Nd of Nd input-

output pairs;

• a set Sk = (Xi, y′i)i=1,...,Nk ∈ (P(Rn) × R)Nk of Nk labeled regions corresponding

to problem-specific prior-knowledge.

Typically, Nk < Nd but this is not required.

Sd can trivially be transformed so that the whole training data has values in P(Rn)×

R by taking singletons of the feature vectors:

S̃d = ({xi}, yi) (4.29)

The homogeneous dataset S̃d ∪Sk can then be used to train an SVM+gRBF combi-

nation in a similar way an SVM+RBF combination would use labeled data points.

Remark 4.5.4. If Sk = ∅, the gRFB kernel is equivalent to the standard RBF kernel.

Figure 4.8 is a visual example of binary classification with the C-SVM+gRBF com-

bination. The labeled regions produce the intended effect on the decision boundary.

Figure 4.8d is an example of conflict that can occur between the data and the prior-

knowledge: a data point from the “red” class conflicts with a labeled region from the

the “blue” class. In this particular case, the SVM finds a reasonable decision boundary

which classifies the data point correctly and still takes the labeled region into account.

Figure 4.9 is a visual example of regressions using the ε-SVM+RBF combination.

Different values of the kernel bandwidth parameter γ have been tested. We can see
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(b) ε-SVR+gRBF, no training data

Figure 4.7: Decision models obtained from labeled regions alone without training data.
(a) is a binary classification problem with 2 features f1 and f2. The red and blue boxes
indicate the labeled regions belonging to different classes. The green line indicates the
decision boundary and the red and blue lines the SVM margin. (b) is a regression problem
with a single feature x. The red segments represent the labeled regions.
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(d) 2 labeled regions with conflict

Figure 4.8: Example of binary classification with the C-SVM+gRBF combination on 2-
dimensional data. Training data from the 2 classes are represented with red and blue circles.
Labeled regions are represented with red and blue rectangles according to their label. The
decision boundary is represented in green and the margin by the 2 adjacent red and blue
curves.
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that the data points have a local influence whereas the labeled regions have a more

spread-out influence (this is particularly obvious with large values of γ). Figure 4.9d

contains a conflict between data and prior-knowledge. Unlike for the previous example

in Figure 4.8d, we can see that the decision function has a very erratic behavior which

requires fixing.

Remark 4.5.5. Erratic behaviors such as in Figure 4.9d are caused by the conjugation of 2

different factors: conflicts between data and prior-knowledge (treated in Section 4.5.2.3),

and the fact that gRBF kernels are non-PD (treated in Section 4.5.3.1) causing the

optimization process to stop at a local optimum. Dealing with just a single one of the

causes usually solves the problem as shown in the respective sections.

4.5.2.3 Resolution of conflicts

In this section, we propose a way to solve conflicts between data and prior-knowledge.

Conflicts occur when there is i1 ∈ J1, NdK and i2 ∈ J1, NkK such that xi1 ∈ Xi2 with

yi1 6= y′i2 . Then, the data point xi1 is in contradiction with the labeled region Xi2 from

the prior-knowledge. As seen on Figure 4.9d, conflicts may cause the decision function

to behave strangely.

The proposed solution involves a transformation of the labeled regions of Sk in order

to “avoid” the data samples in Sd by “drilling holes” into them. The objective of the

KE-RBF framework is to use prior-knowledge in order to compensate for insufficient

data rather than for incorrect data. Therefore, it is a reasonable approach to modify

the prior-knowledge which is general and more approximative than the data carrying

specific and therefore more precise information.

The “holes” created in the labeled sets are topological open balls.

Definition 4.5.6. Open ball in Rn

Let x0 ∈ Rn and ρ > 0. The open ball with center x0 and radius ρ is the set defined

as:

B(x0, ρ) = {x ∈ Rn|‖x− x0‖2 < ρ} (4.30)

We denote with Bρ =
⋃Nd
i=1B(xi, ρ) the set of all the open balls with radius ρ centered

on every training data point. The idea is to remove Bρ from every labeled region in Sk.
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(b) γ = 15
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(c) γ = 50
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(d) γ = 15 with conflict

Figure 4.9: Example of 1-dimensional regression with the ε-SVR+gRBF combination
(continuous line). Training data are represented with blue circles. Labeled regions are
represented thick red lines. The regression obtained with the standard RBF kernel without
labeled regions is given as a reference (dashed line).
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Therefore, we get a modified set of labeled regions:

S̃k = (Xi − Bρ, y′i)i=1,...,Nk (4.31)

The full training set containing data and knowledge is S = S̃t∪S̃k. The kernel Gram

matrix is then computed from the training set S like for any standard kernel over Rn.

Figure 4.10 shows how choosing an adequate value for ρ solves the problem caused

by conflicts. When ρ becomes larger, the erratic behavior of the decision model is

attenuated and becomes consistent with the data and the prior-knowledge. An empirical

study on the ρ parameter is available in the example of application in Section 5.6.

ρ is a new learning parameter which implications might not be transparent. We pro-

pose an alternative approach for setting ρ a priori, without resorting to computationally

intensive methods such as a grid-search during the learning phase. This is achieved by

specifying the maximal collinearity allowed between a labeled data sample and a labeled

region. The value of the gRBF kernel product varies between 0 for orthogonal (i.e. un-

related) objects and 1 for perfectly collinear objects (i.e. similar objects). Therefore, if

we want the collinearity between a labeled data sample x and a labeled region X to be

limited to a fraction 0 < p ≤ 1 of the maximal value:

Kgrbf(X , {x}) ≤ p ⇐⇒ exp(−γd(X , {x})2) ≤ p

⇐⇒ −γd(X , {x})2 ≤ ln(p)

⇐⇒ γd(X , {x})2 ≥ ln(
1

p
)

⇐⇒ d(X , {x})2 ≥ 1

γ
ln(

1

p
)

(4.32)

And since d(X , {x}) ≥ ρ, it is sufficient to take:

ρ2 =
1

γ
ln(

1

p
) ⇐⇒ ρ =

√
1

γ
ln(

1

p
) (4.33)

Therefore, with this method, the value of ρ depends the value of the kernel bandwidth

parameter γ. Table 4.2 gives reference values for ρ according to the p chosen.
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(a) ρ = 0
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(b) ρ = 0.1
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(c) ρ = 0.2

Figure 4.10: Effects of ρ on the labeled regions and the decision model (γ = 15 for all the
models). Conventions are the same as for Figure 4.9.
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p ρ

0 ∞
0.01 2.1460√

γ

0.1 1.5174√
γ

0.2 1.2686√
γ

0.3 1.0973√
γ

0.4 0.9572√
γ

0.5 0.8326√
γ

1 0

Table 4.2: Values for ρ corresponding to different values of p.

4.5.3 Computational challenges

gRBF kernels bring a number of new challenges of computational order for which solu-

tions must be proposed. First, gRBF kernels are not PD kernels causing SVM solvers to

return local optima instead of global ones (Section 4.5.3.1). Moreover, computing the set

distance is not a trivial problem (Section 4.5.3.2). Finally, the computational complexity

of computing a Gram matrix is higher with the gRBF kernel (Section 4.5.3.3).

4.5.3.1 Non-positive kernels: a spectral approach

gRBF kernels are not PD kernels as shown in the following minimal example.

Example 4.5.7. Let n = 1, γ = 1 and ρ = 0 (i.e. we ignore conflicts between data and

prior-knowledge). The gRBF kernel Gram matrix for the sets X1 = {−1}, X2 = {1}

and X3 = [−0.5, 0.5] is:

M =


1 e−4 e−0.25

e−4 1 e−0.25

e−0.25 e−0.25 1

 (4.34)

The eigenvalues of the matrix are roots of the characteristic polynomial in λ:

det(M − λI) =

∣∣∣∣∣∣∣∣∣∣
1− λ e−4 e−0.25

e−4 1− λ e−0.25

e−0.25 e−0.25 1− λ

∣∣∣∣∣∣∣∣∣∣
(4.35)

which are approximately λ1 = 2.1106, λ2 = 0.9817 and λ3 = −0.0923. We notice that
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λ3 < 0 and therefore a gRBF kernel is not a PD kernel.

Since λ1λ3 < 0 (i.e. it has eigenvalues of opposite signs), a gRBF kernel is an

indefinite kernel.

Non-positive kernels pose two different issues. The first one is a problem of com-

putational order since the resulting optimization problem is not convex anymore. The

second one is more theoretical. Non-positive kernels do not entail the existence of a

RKHS. Therefore, essential results such as the Moore-Aronszajn theorem or the repre-

senter theorem cannot be used to justify the statistical soundness of SVMs as done in

Chapter 2 with PD kernels.

Nevertheless, the use of non-positive kernels with SVMs is increasingly popular and

various solutions have been proposed to overcome the first issue. The simplest solution

is to passively deal with the problem and to solve the non-convex problem with the

standard SVM solvers. Sometimes, this can work well as in [27, 93] or in the example in

Figure 4.8. However, the SVM solver will return a local optimum which is not guaranteed

to be a global one. Therefore, the quality of the solution may be very unstable as in

Figure 4.9 and this solution is not recommended.

Solutions actively dealing with this problem have also been proposed. New types of

SVMs or solvers in order to deal with non-positive kernels have been proposed [41, 54].

However, those solutions are not strictly kernel-based approaches and give up on the

use of standard SVMs.

Other solutions working on direct transformations of the kernel Gram matrix are

more in-line with our purpose. In particular, there are different ways of turning the ker-

nel Gram matrix into a positive semi-definite matrix using the eigenvalue decomposition

of the original matrix. Wu et al. [94] propose an empirical study of those methods.

Being symmetrical, a kernel Gram matrix K admits the following eigenvalue decom-

position:

K = Udiag(λ1, . . . , λN )UT (4.36)

where N is the size of the input data, U is an orthogonal matrix and diag(λ1, . . . , λN )

is the diagonal matrix of the eigenvalues λ1, . . . , λN some of which may be negative.

Wu et al. [94] found 2 methods to work particularly well: flipping and shifting.
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Flipping consists in taking the opposite of negative eigenvalues. Accordingly, the

“flipped” kernel Gram matrix is:

flip(K) = Udiag(|λ1|, . . . , |λN |)UT (4.37)

Shifting consists in adding η > 0 to each of the eigenvalues in order to make them

positive. Usually, the minimal value for η is chosen, i.e. η = −mini=1,...,N λi. Therefore,

the “shifted” kernel Gram matrix is:

shift(K) = Udiag(λ1 + η, . . . , λN + η)UT (4.38)

with η = −mini=1,...,N λi.

Figure 4.11 shows the effects of applying flipping and shifting on the classification

example used in Figure 4.8d. We can see that both methods have the effect of smoothing

out the decision boundary. In this case, the results of flipping is clearly more desirable

than shifting. Figure 4.12 does the same for the regression example used in Figure 4.9d

(though with a lower value of γ). Again, the decision model is smoother after transfor-

mation of the matrix and flipping appears to perform better than shifting. An empirical

comparison of flipping and shifting, also suggesting the superiority of flipping, can be

found in Section 5.6.3.

As pointed out by Wu et al. [94], flipped and shifted kernels have decreased general-

ization capabilities (i.e. they become less good at labeling data not seen in the training

set) due to the transformation applying to the training data only. If the unlabeled data

is available at training time, applying flipping or shifting on the kernel Gram matrix

containing the full data (labeled and unlabeled) may improve generalizability at the

expense of additional time required for computing and transforming the full matrix. A

precise estimation of the additional cost as-well-as a method for keeping it minimal is

proposed in Section 4.5.3.3.

An empirical study available in Section 5.6.4 shows that applying the transformation

on the full data can indeed improve the results. However, the gains are rather marginal

and may not be worth the overhead in computing time when speed is a critical aspect.
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Figure 4.11: Shifting and flipping applied to the example from Figure 4.8d.
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(b) Flipping
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(c) Shifting

Figure 4.12: Shifting and flipping applied to the example from Figure 4.8d (γ = 5 and
ρ = 0).
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The second theoretical issue related to the use of indefinite kernels can be ignored

in practice since it does not prevent the effective use of non-positive kernels. Therefore,

it is more of a philosophical question than a practical hurdle. An element of answer

may be that the theory of Reproducing Kernel Krein Spaces (RKKS) for non-positive

kernels has results similar to the Moore-Aronszajn and representer theorems. [54] can

be consulted for more details.

4.5.3.2 Computation of the set distance

Another computational challenge associated with the gRBF kernel is that there is no

generic way of computing the set distance d(A,B) for arbitrary sets A and B. Whether

the set distance can be computed and how quickly it can be computed depends on

the analytical expression of the sets. Therefore, it is necessary to restrict the labeled

regions obtained from prior-knowledge to types of sets for which the set distance is easily

computable.

In order of increasing computational complexity, we consider balls, orthotopes (bet-

ter known as “hyperrectangles”) and convex polytopes. Considering the way the prior-

knowledge is usually obtained from ranges on the features, orthotopes are a good com-

promise between flexibility and computational complexity.

For each type of sets, 2 types of distances need to be computed: set-to-set distances

for non-singleton sets corresponding to distance between 2 labeled regions and set-to-

singleton distances corresponding to the distance between a labeled set and a data point.

Balls Open balls B(x, r) are the topological structures introduced in Definition 4.5.6.

They are characterized by their center x and their radius r > 0. The distance between

two balls B1 = B(x1, r1) and B2 = B(x2, r2) is:

d(B1,B2) = max(‖x1 − x2‖2 − r1 − r2, 0) (4.39)

The distance between a ball B1 = B(x1, r1) and a singleton {x2} is:

d(B1, {x2}) = max(‖x1 − x2‖2 − r1, 0) (4.40)

Remark 4.5.8. Choosing open balls or closed balls makes no difference.
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Therefore, the set distance between balls and singletons is as quick to compute as the

standard Euclidean distance between points. However, balls are of a limited practical

use as they do not correspond to the way the prior-knowledge is commonly defined.

Orthotopes Orthotopes are a generalization of rectangles from 2 dimensions to n

dimensions. They are fully characterized by 2n bounds: one lower bound li and one

upper bound ui for every dimension i ∈ J1, nK.

Definition 4.5.9. Orthotope

Let (li)i=1,...,n ∈ Rn and (ui)i=1,...,n ∈ Rn be such that ∀i, li ≤ ui. The orthotope

of Rn with lower bounds (li)i=1,...,n ∈ Rn and upper bounds (ui)i=1,...,n ∈ Rn denoted

R((li, ui)i=1,...,n) is defined as:

R((li, ui)i=1,...,n) = {(x1, . . . , xn) ∈ Rn|∀i, li ≤ xi ≤ ui} (4.41)

The distance between two othotopesO1 = R((li,1, ui,1)i=1,...,n) andO2 = R((li,2, ui,2)i=1,...,n)

is given by:

d(O1,O2) =

√√√√ n∑
i=1

max(0, li,2 − ui,1, li,1 − ui,2)2 (4.42)

The distance between an orthotope O = R((li, ui)i=1,...,n) and a singleton {(x1, . . . , xn)}

is given by:

d(O, {(x1, . . . , xn)}) =

√√√√ n∑
i=1

max(0, li − xi, xi − ui)2 (4.43)

Therefore, the distance between orthotopes and singletons can be computed in O(n)-

time where n is the dimension of the feature space, which can be considered constant

time, which is the same order as for the Euclidean distance.

In addition, orthotopes are much more flexible than balls and correspond better to

the way prior-knowledge is available through explicit bounds and ranges of the features.

Remark 4.5.10. Definition 4.5.9 defines the bounded orthotopes. The unbounded or-

thotopes reaching until +∞ or −∞ in one or more directions can also be considered by

extending the domain of bounds to R = R ∪ {−∞,+∞}. The set distances (4.42) and
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(4.43) are still valid provided we pose ∞−∞ = 0.

Convex polytopes Convex polytopes can be viewed as an extension of othotopes for

which bounding hyperplanes do not need to be perpendicular to the axes. They can be

constructed by intersecting half-spaces.

Definition 4.5.11. Half-space Let a ∈ Rn with a 6= 0 and b ∈ R. The half-space of Rn

parametrized by (a, b) denoted H(a, b) is defined as:

H(a, b) = {x ∈ Rn|a · x ≤ b} (4.44)

Definition 4.5.12. Convex polytope (non-empty)

A convex polytope is the non-empty intersection of an arbitrary number of half-

spaces.

Let P1 =
⋂N1
i=1H(ai,1, bi,1) and P2 =

⋂N2
i=1H(ai,2, bi,2) be two convex polytope. Let

x̂1 and x̂2 be solutions of the quadratic program:

minimize
(x1,x2)∈(Rn)2

‖x1 − x2‖22

subject to ai,1 · x1 ≤ bi,1, i1 = 1, . . . , N1

ai,2 · x2 ≤ bi,2, i2 = 1, . . . , N2

(4.45)

By definition, the set distance between the polytopes is d(P1,P2) = ‖x̂1 − x̂2‖2.

In a similar fashion, the distance between the convex polytope P1 =
⋂N1
i=1H(ai,1, bi,1)

and the singleton {x2} can be computed by solving the quadratic program:

minimize
x1∈Rn

‖x1 − x2‖22

subject to ai,1 · x1 ≤ bi,1, i1 = 1, . . . , N1

(4.46)

Then, the corresponding set distance is d(P1, {x2}) = ‖x̂1 − x2‖2.

(4.45) and (4.46) are convex optimization problems for which a global optimum

can be efficiently computed. Therefore, computing the set distance between convex

polytopes requires solving a convex quadratic program which is much more costly than

for orthotopes. Since the additional expressiveness of convex polytopes compared to
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orthotopes is difficult to exploit, orthotopes are expected to be the best choice in most

practical situations.

4.5.3.3 Managing the computational complexity

Using gRBF kernels is more costly than using the standard RBF kernel. Additional cost

may be incurred in the following steps:

1. computing the region-to-region kernel products (Nk(Nk+1)
2 products) and the region-

to-sample kernel products (NkNd products);

2. flipping or shifting the kernel Gram matrix.

Step 1 has a potentially high additional cost due to the undetermined cost associated

to the computation of the set distance. However, this cost can be maintained low

(comparable to the cost of computing the Euclidean distance in the standard RBF

kernel) by restricting oneself to specific types of sets such as orthotopes as seen in

Section 4.5.3.2.

Finding the eigenvalues of the kernel Gram matrix involves finding the roots of a

degree Nd + Nk polynomial, for which no effective exact method exists. The most

efficient numerical methods have orders of complexity of O((Nd+Nk)
3) [94]. Fast matrix

multiplication with the Coppersmith-Winograd algorithm can be done in O((Nd+Nk)
ω)

operations with ω ≤ 2.376 [13]. Therefore, step 2 can be done within O((Nd + Nk)
3)

operations.

In most practical cases Nk << Nd is a reasonable assumption. Therefore, the ad-

ditional cost due to steps 1 and 2 should be limited. However, this is not true when

the full kernel matrix containing the test data as well is processed as suggested in Sec-

tion 4.5.3.1. In this case, the cost of step 2 becomes O((Nd + Nk + Nt)
3) where Nt is

the amount of unlabeled “test” data. This can be problematic if Nt >> Nd+Nt, a very

realistic possibility.

One may try to reduce this cost by splitting the test data in several batches treated

successively. The cost would then become:

O(k(Nd +Nk +
Nt

k
)3)

= O((Nd +Nk)
3k + 3(Nd +Nk)

2Nt + 3(Nd +Nk)N
2
t k
−1 +N3

t k
−2)

(4.47)
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where k is the amount of batches. Let g(k) = (Nd +Nk)
3k + 3(Nd +Nk)

2Nt + 3(Nd +

Nk)N
2
t k
−1 +N3

t k
−2.

∂g

∂k
(k) = (Nd +Nk)

3 − 3(Nd +Nk)N
2
t k
−2 − 2N3

t k
−3) (4.48)

Therefore:

∂g

∂k
(k) = 0 ∧ k 6= 0

⇐⇒ k3 ∂g

∂k
(k) = 0 ∧ k 6= 0

⇐⇒ ((Nd +Nk)k)3 − 3N2
t ((Nd +Nk)k)− 2N3

t = 0 ∧ k 6= 0

(4.49)

This degree 3 polynomial equation in (Nd+Nk)k can be solved using Cadrano’s method.

The discriminant is:

∆ = (−2N3
t )2 +

4

27
(−3N2

t )3 = 4N6
t +

4

27
(−27N6

t ) = 0 (4.50)

Therefore, the equation in (Nd +Nk)k has 2 distinct real solutions:


(Nd +Nk)k1 =

3(−2N3
t )

−3N2
t

= 2Nt

(Nd +Nk)k2 =
−3(−2N3

t )

2(−3N2
t )

= −Nt

(4.51)

among which only one is positive:

k1 =
2Nt

Nd +Nk
(4.52)

Example 4.5.13. For example, if there are Nd = 100 labeled training data, Nk = 2

labeled sets and Nt = 1000 unlabeled data, k1 = 19.6078. Therefore, the unlabeled data

should be split in about 20 batches.

An empirical study in Section 5.6.4 suggests that the overall improvement brought

by processing the full data matrix is relatively minimal, and therefore might not be

worth the potentially huge additional cost in time.
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Figure 4.13: General workflow diagram involving the gRBF kernel.

4.5.4 Workflow diagram

The general workflow involving the gRBF kernel can be summarized as follows:

1. Combination of labeled data points and labeled regions into a single training set.

Labeled regions may need to be adjusted using the parameter ρ in order to avoid

conflicts with the data (optional).

2. Computation of the kernel Gram matrix K from the training set. Test data may

also be included in order to improve generalization (optional).

3. Spectral transformation of K by flipping or shifting (optional but strongly recom-

mended).

4. Training of any standard SVM using K.

A graphical representation of the workflow is available in Figure 4.13.

4.6 Discussion: complementary role of prior-knowledge

and data

The possibility to take into account global properties of the class distribution is a funda-

mentally lacking aspect of the SVM+RBF combination. By nature, the SVM relies on

the local characteristics of the data (the support vectors) in order to define the decision

model. Adding or removing any amounts of points outside of the margin does not affect

the decision boundary. As a matter of fact, methods (such as combination of SVM with

discriminant analysis in [31]) have proposed to specifically address this issue.

In contrast, the prior-knowledge incorporated into KE-RBF kernels has a global

influence (affecting the whole feature space) or semi-global influence (affecting large
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regions of the feature space). Unlabeled and labeled regions incorporated using gRBF

and ξRBF kernels induce semi-global effects over areas exceeding these regions. A priori

correlations introduced by pRBF kernels have a global influence spreading across the

entire feature space: the monomial and polynomial properties which are inherited by

the decision model (see Theorem 4.4.6) are global properties.

Overall, KE-RBF kernels provide an effective way to incorporate prior-knowledge

with global or semi-global influence which is complementary to the training points pro-

viding a local influence.
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Chapter 5

Empirical Evaluation of KE-RBF

Kernel Framework

5.1 Introduction

In this Chapter, we provide a detailed performance evaluation for the KE-RBF kernel

framework presented in Chapter 4.

5.1.1 Objectives

The objectives of this validation are multiple. First, we prove that the different KE-

RBF kernel designs work as intended: they lead to significant performance improvements

when used with adequate prior-knowledge in place of the standard RBF kernel.

Next, with the variety of applications on multiple domains of application proposed

in this chapter, we show that the framework is easily usable in practice and that oppor-

tunities for the KE-RBF kernels in real-world applications are numerous.

Finally, we show that KE-RBF kernels are able to overperform standard kernels

with much smaller or strongly biased training sets, thereby contributing to significantly

broaden the field of application of SVMs.

5.1.2 Outline

Five different and independent applications are proposed in this performance evaluation.

They are the following:
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1. An application to the diagnosis of breast cancer from cytological images using ex-

pert medical advice in the form of unlabeled sets with ξRBF kernels in Section 5.2.

2. An application to the prediction of meteorological data with prior-knowledge on

pseudo-periodicity using ξRBF kernels in Section 5.3.

3. The last application of ξRBF kernels in Section 5.4 involves signal reconstruction

using the combination of multiple frequencies. The choice of a multiplicative design

over an additive design for the combination of frequencies is also validated here.

4. Section 5.5 is an application of pRBF kernels to the prediction of zootomical1 data

on a population of abalones using a priori correlations between features and labels.

5. The last application on meteorological data in Section 5.6 uses the gRBF kernel

and different types of labeled regions as prior-knowledge.

All the applications use real-life data available from public sources, with the exception

of Section 5.4 which involves synthetic data.

5.2 Diagnosis of breast cancer from fine needle aspiration

biopsy micrographs using expert medical advice

The following binary classification problem using real-life data is an example of appli-

cation of ξRBF kernels incorporating the unlabeled regions presented in Section 4.3.1.

It consists in the diagnosis of breast cancer from the aspect of breast cell nuclei from

biopsy micrographs. This application uses the “Wisconsin Breast Cancer” dataset pub-

licly available at the UCI Machine Learning Repository2.

Section 5.2.1 presents the data, prior-knowledge and classifiers used in this appli-

cation. A first batch of experiments presented in Section 5.2.2 studies the effects of

incorporating unlabeled regions according to the size of the training sample. A second

batch presented in Section 5.2.3 compares the use of crisp sets and fuzzy sets.

1“Zootomy” is the study of animal anatomy.
2http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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5.2.1 Data, prior-knowledge and learning algorithm

The dataset was constructed from micrographs of breast Fine Needle Aspiration (FNA)

biopsies performed on healthy subjects and breast cancer patients. A breast FNA biopsy

is a standard diagnostic procedure for breast cancer. As the name suggests, it involves

the extraction of cells by aspiration with a needle. A micrograph from an FNA biopsy

typically consists in a few cells on a clear and uniform background. Cell nuclei are

extracted using an Active Contour (AC) method, a relatively simple task compared

to other image modalities such as excisional biopsies where a whole mass of tissue is

removed (see Chapter 4 for an application to excisional biopsies). Figure 5.1 shows an

example of breast FNA biopsy micrograph with some cell nuclei extraction results.

Figure 5.1: Sample breast FNA micrograph from [75]. Extracted nuclei are delineated in
white.

The database itself is a collection of input-output pairs with the input being a real-

valued vector containing morphological features calculated from the contours of the

extracted nuclei and the output being a Boolean value indicating the occurrence of

breast cancer. It contains 569 data instances, 357 corresponding to benign cases (non

cancer) and 212 to malignant cases (cancer). We make use of two specific features: the

mean texture and the mean smoothness of the cell nuclei. Both features are normalized

in [−1, 1]. Full details on the database are available in [75].

The unlabeled set A used as prior-knowledge is obtained from expert medical knowl-

edge about cell morphology. The diagnosis of breast cancer from cytological images is

based upon the study of Nuclear Atypia (NA), i.e. any feature uncharacteristic of nor-

mal cell nuclei. Nuclei with homogeneous interiors and smooth contours are considered
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normal nuclei. Accordingly, we translate this expert knowledge into an unlabeled set

of the feature space: if both normalized features are smaller than −0.5, then nuclei are

typical. This translates into the following unlabelled set A = [−∞,−0.5]2. Note that

we cannot a priori label A or {A as benign or malignant since the presence of NA alone

is not a valid characterization of breast cancer. Indeed, nuclei can be atypical due to

other reasons that cancers and some rare cancers show seemingly normal nuclei in early

stages.

The C-SVM described in Chapter 2 and the ξRBF kernel presented in Section 4.3.1

are used. The C and γ parameters are adjusted every time by performing a grid search

combined with a 2-folds cross-validation. Numerical results correspond to average mis-

classification rates over 100 training-testing cycles during which the training data is

randomly selected.

5.2.2 Effects of prior-knowledge with different sizes of training set

The first batch of experiments uses the ξRBF kernel described in Section 4.3.1.1 incor-

porating the above prior-knowledge as a crisp set. Training sets are created by randomly

choosing N instances. The models are tested on the 569−N remaining instances.

Figure 5.2 shows average results over 100 random selections for different sizes N of

the training sets and different values of the parameter µ ∈ [0, 1] controlling the amount of

prior-knowledge into the kernel. Overall, the ξRBF kernel outperforms the original RBF

kernel (µ = 0), specially when the training set is small: the best rate of improvement

over the RBF kernel is 23.89% and is achieved when N = 8 and µ = 1. This rate

decreases when N becomes larger and the adapted kernel is about on a par with the

RBF kernel when N = 64. Moreover, we can notice that the optimal µ (in bold in the

tables) decreases when N increases: µ = 1 for N = 8, µ = 0.2 for N = 16 and µ = 0.1

for N = 36 or N = 64. This confirms the intuitive idea that the prior-knowledge is more

important when the training set is small and becomes less useful as more training data

is available. In general, µ = 0.5 seems to be a good default value for the parameter µ.
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µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1
N = 8 0.2009 0.1831 0.1792 0.1752 0.1648 0.1577 0.1559 0.1575 0.1581 0.1580 0.1529
N = 16 0.1555 0.1420 0.1372 0.1388 0.1384 0.1390 0.1404 0.1422 0.1438 0.1479 0.1490
N = 32 0.1342 0.1275 0.1278 0.1287 0.1295 0.1315 0.1314 0.1353 0.1331 0.1334 0.1343
N = 64 0.1260 0.1237 0.1253 0.1263 0.1266 0.1263 0.1276 0.1285 0.1278 0.1275 0.1294

(a) Average misclassification rates

µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1
N = 8 0 0.0885 0.1081 0.1276 0.1794 0.2148 0.2238 0.2159 0.2131 0.2134 0.2389
N = 16 0 0.0869 0.1179 0.1072 0.1103 0.1063 0.0974 0.0856 0.0751 0.0487 0.0421
N = 32 0 0.0497 0.0472 0.0409 0.0346 0.0201 0.0203 -0.0082 0.0082 0.0058 -0.0010
N = 64 0 0.0178 0.0055 -0.0022 -0.0047 -0.0028 -0.0126 -0.0203 -0.0145 -0.0119 -0.0269

(b) Average improvement rates
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(d) Graphical representation of (b)

Figure 5.2: Average results with a crisp unlabeled set for different sizes N of training set
and values of µ. (a) and (c) correspond to misclassification rates. (b) and (d) correspond
to improvement rates over the standard RBF kernel (i.e. µ = 0). For (c) and (d), the color
convention is: black for N = 8, blue for N = 16, red for N = 32 and green for N = 64.

5.2.3 Crisp sets versus fuzzy sets

A second batch of experiments was performed in a similar setting with fuzzified versions

of the indicator function. Instead of a discontinuous transition from χ(x) = −1 when

x /∈ A to χ(x) = 1 when x ∈ A, the transition is made linear with a slope α as shown

in Figure 5.3.

Figure 5.4 shows average results over 100 random selections for different values of

µ ∈ [0, 1] and α. All the means are computed for the same 100 randomly selected training

sets. The training sample size is fixed to N = 8, a small size which proved to favor the

adapted kernel in the previous batch. It appears that the fuzzified version also performs

well, with the ξRBF kernel clearly improving the results obtained with the standard

RBF kernel. This improvement is however generally less when the slope is more gentle

(specially α = 2.5), which can be justified by the fact that the prior-knowledge is more

approximate.

In conclusion of this application, the prior-knowledge corresponding to unlabeled

sets can substantially reduce the required amount of training data by improving the

classification results by a large margin when training set size is small. This improve-
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Figure 5.3: Indicator functions with different values of α.

µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1
α =∞ 0.2012 0.1784 0.1727 0.1696 0.1662 0.1659 0.1681 0.1693 0.1688 0.1686 0.1642
α = 20 0.2012 0.1748 0.1668 0.1640 0.1601 0.1603 0.1636 0.1640 0.1643 0.1644 0.1620
α = 10 0.2012 0.1781 0.1687 0.1657 0.1614 0.1634 0.1667 0.1652 0.1635 0.1633 0.1598
α = 5 0.2012 0.1823 0.1762 0.1704 0.1677 0.1690 0.1690 0.1673 0.1677 0.1686 0.1697
α = 2.5 0.2012 0.1888 0.1896 0.1878 0.1853 0.1832 0.1827 0.1830 0.1807 0.1791 0.1781

(a) Average misclassification rates

µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1
α =∞ 0 0.1131 0.1413 0.1570 0.1738 0.1752 0.1645 0.1586 0.1607 0.1621 0.1836
α = 20 0 0.1311 0.1707 0.1850 0.2041 0.2030 0.1869 0.1846 0.1834 0.1826 0.1946
α = 10 0 0.1147 0.1614 0.1765 0.1977 0.1878 0.1714 0.1789 0.1870 0.1881 0.2059
α = 5 0 0.0938 0.1241 0.1532 0.1662 0.1598 0.1600 0.1684 0.1665 0.1621 0.1563
α = 2.5 0 0.0618 0.0573 0.0665 0.0791 0.0896 0.0916 0.0905 0.1015 0.1098 0.1148

(b) Average improvement rates
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(d) Graphical representation of (b)

Figure 5.4: Average results for N = 8 and different values of µ and α. (a) and (c)
correspond to misclassification rates. (b) and (d) correspond to improvement rates over the
standard RBF kernel (i.e. µ = 0). For (c) and (d), the color convention is: black for α =∞
(crisp indicator function), blue for α = 20, red for α = 10 green for α = 5 and yellow for
α = 2.5.
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ment is less significant when more training data are available which suggests that the

additional data play a role similar to the prior-knowledge in compensating for the lack

of training data.

5.3 Prediction of meteorological data using pseudo-periodicity

The following application based upon real-life meteorological data is an example of the

use of prior-knowledge related to pseudo-periodicity using the ξRBF kernel as presented

in Section 4.3.2.1.

5.3.1 Data, prior-knowledge and learning algorithm

This application is based upon publicly available meteorological data from the UK Cli-

mate Projections database3. It is a scalar regression problem using the monthly average

temperatures measured from January 1914 to December 2006 at the geographic point

with coordinates: easting 337500 - northing 1032500. A training set of N values from

these 93× 12 = 1104 monthly averages is used to predict values of the remaining ones.

The only feature is the corresponding date.

Although some variations are usually observed from one year to another, average

temperatures follow the cycle of seasons. Accordingly, the prior-knowledge is a pseudo-

periodicity of 1 year incorporated into the advice function in a fashion described in

Section 4.3.2.1.

The ε-SVR described in Chapter 2 was used with ε = 0.1. Results are compared in

terms of average absolute error. The procedure followed is similar to the one used for

the application in Section 5.2, including the grid search combined with a 2-folds cross

validation to set C and γ.

5.3.2 Empirical results

Figure 5.5 shows the average results over 50 randomly selected training sets for differ-

ent values of the training set size N and the parameter µ. The overall improvement

compared to the standard RBF kernel is very significant, reaching 62.06% for N = 100

and µ = 1. As for the previous applications, the rate of improvement is less when the

3http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/

136



training set becomes larger. The incorporation of prior-knowledge radically improves

the results even when µ = 0.1, and larger values of µ only yield marginal additional

improvements. Best rates of improvements are obtained with large values of µ (µ = 1

for N = 50, 100, 400 and µ = 0.9 for N = 200).

µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1
N = 50 2.9915 1.2456 1.2432 1.2201 1.2072 1.1961 1.1999 1.1982 1.1972 1.1881 1.1865
N = 100 2.6978 1.0597 1.0510 1.0457 1.0473 1.0378 1.0339 1.0314 1.0308 1.0271 1.0236
N = 200 2.2980 0.9659 0.9631 0.9594 0.9577 0.9552 0.9545 0.9532 0.9528 0.9500 0.9503
N = 400 1.6554 0.9155 0.9110 0.9093 0.9092 0.9107 0.9076 0.9079 0.9059 0.9067 0.9049

(a) Average error

µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1
N = 50 0 0.5836 0.5844 0.5921 0.5964 0.6002 0.5989 0.5995 0.5998 0.6028 0.6034
N = 100 0 0.6072 0.6104 0.6124 0.6118 0.6153 0.6168 0.6177 0.6179 0.6193 0.6206
N = 200 0 0.5797 0.5809 0.5825 0.5832 0.5844 0.5846 0.5852 0.5854 0.5866 0.5865
N = 400 0 0.4470 0.4497 0.4507 0.4508 0.4499 0.4517 0.4516 0.4527 0.4523 0.4534

(b) Average improvement rates
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(d) Graphical representation of (b)

Figure 5.5: Average results for different values of N and µ. (a) and (c) correspond to
mean errors. (b) and (d) correspond to improvement rates over the standard RBF kernel
(i.e. µ = 0). For (c) and (d), the color convention is: black for N = 50, blue for N = 100,
red for N = 200 and green for N = 400.

The results also show that the amount of required training data can be significantly

reduced by the use of the ξRBF kernel. Indeed, the average error obtained with the

ξRBF kernel (µ = 1) and only N = 50 training data points is lower that the average

error obtained with the standard RBF kernel (µ = 0) and N = 400 training data points.

This corresponds to an almost 90% cut in data requirement.

In conclusion, incorporating pseudo-periodicity as prior-knowledge using the ξRBF

kernel presented in Section 4.3.2 can effectively improve learning performance. The

improvements are particularly significant with small datasets which allows a significant

reduction in training data requirements.
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5.4 Reconstruction of signal using information on its fre-

quency decomposition

Following the case of a single frequency in Section 5.3, we now study the incorporation

of multiple dominant frequencies with the ξRBF kernel described in Section 4.3.2.2.

This application consists in the reconstruction of a noisy signal with 2 dominant

frequencies using the ε-SVR. The signal is artificially generated according to a procedure

described in Section 5.4.1. The different kernels compared in this study are presented

in Section 5.4.2 and include ξRBF kernels with just one or both of the frequencies as

prior-knowledge. Empirical results are presented in Sections 5.4.3, 5.4.4 and 5.4.5.

5.4.1 Mixture of harmonics with additive white Gaussian noise

The data for this study is artificially generated by sampling the following 1-dimensional

signal:

f(t) = a1 sin

(
2π

p1
t

)
+ a2 sin

(
2π

p2
t

)
+ awgnσn(t) (5.1)

It is a sum of 2 periodic signals with respective periods p1 and p2, and some average

white Gaussian noise with standard deviation σn. For this whole study, p1 = 7 and

p2 = 3 (note: p1 ∧ p2 = 1).

The data is sampled randomly and uniformly from the interval I = [1, 100]. A

training set SN of size N is constructed by taking N points (xi)i=1,...,N i.i.d. according

to the uniform distribution over I from which the set of N input-output pairs SN =

(xi, f(xi))i=1,...,N is obtained.

Given a training set SN = (xi, f(xi)i=1,...,N ) and a test set SM = (x′i, f(x′i)i=1,...,M )

constructed following the above procedure, the task consists in creating a labeling model

f̂ : I → R using the training set SN in order to provide the least absolute error on the

labeling of SM , i.e. minimizing 1
M

∑M
i=1 |f(x′i)− f̂(x′i)|.

The learning machine used for this task is the ε-SVR described in Chapter 2 (with

ε = 0.1). Results are compared in terms of average absolute error. The C and γ

parameters are adjusted every tIme by performing a grid search combined with a 5-
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folds cross-validation. The size of each randomly sampled test set is M = 100. Each

numerical result is an average value over 100 random iterations.

5.4.2 Candidate kernels

The ξRBF kernel K2 which is the central focus of this study incorporates the 2 periods

p1 and p2 as prior-knowledge. Its expression which follows equation (4.17) is:

K2(x1, x2) = ξ1(x1, x2)ξ2(x1, x2)Krbf(x1, x2) (5.2)

with

ξ1(x1, x2) =
cos
(

2π
p1 (x1 − x2) + 1

)
2

(5.3)

and

ξ2(x1, x2) =
cos
(

2π
p2 (x1 − x2) + 1

)
2

(5.4)

During this study, all ξRBF kernels are used with µ = 1, a reasonable default choice

according to the previous empirical study in Section 5.3. For comparison, we also use

the additive version K ′2 from Equation (4.20) predicted to perform less good than the

multiplicative version K2 (see discussion in Section 4.3.2.2):

K ′2(x1, x2) = (ξ1(x1, x2) + ξ2(x1, x2))Krbf(x1, x2) (5.5)

The ξRBF kernel K1 from Equation (4.12) incorporating a single period p1 is also used

in this comparative study. This kernel has already been studied in details in Section 5.3.

Its expression is:

K1(x1, x2) = ξ1(x1, x2)Krbf(x1, x2) (5.6)
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5.4.3 Kernels versus size of the training set

Figure 5.6 shows a comparison of the results obtained with the different ξRBF kernels

(K2,K ′2 and K1) and the standard RBF kernel. For this batch of experiments, the 2

periodic components have the same amplitude a1 = a2 = 1 and a small amount of white

noise is introduced σn = 0.05.

K2 is the ξRBF kernel giving the best results by far. It systematically performs better

than the standard RBF kernel by a large margin. At most, the average error is reduced

by 76, 16% compared to the RBF kernel for a training set size of N = 60. K1 is notably

better than the RBF only for very small training sets (N ≤ 10). Otherwise it fares

comparably to the RBF kernel but systematically less good than K2. This confirms

that the multiplicative framework for combining multiple frequencies is effective. As

expected, the additive version K ′2 of the kernel provides results systematically worse that

K2. They can be clearly bad even compared to the RBF kernel (141.59% worse that

the RBF kernel for N = 150). Therefore, the additive framework should be discarded

in favour of the multiplicative framework.

In general, K2 performs better than the RBF kernel with 4 times less data. Indeed,

the results with K2 and N = 5 (resp. N = 10, N = 20) training samples are better than

the results with the RBF kernel and N = 20 (resp. N = 40, N = 80) training samples.

5.4.4 Kernels versus amplitude of the dominant frequencies

Figure 5.7 are the results for a second batch of experiments. It studies cases when the

amplitudes of the 2 periodic components are different. The ratio a2
a1

takes different values

ranging from 0 to 1. The size of training data is set to N = 50. As for the previous

batch, a1 = 1 and σn = 0.05.

K2 performs very stably regardless of the balance between a1 and a2 with an average

absolute error oscillating between 0.1040 and 0.1170. K1 performs better than K2 only

when a2 = 0. It performs less and less good when the second frequency becomes more

dominant. Therefore, the framework for combining multiple frequencies in a ξRBF

kernel is preferable to the framework incorporating a single frequency even if a frequency

largely dominates the others.
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K2 K′
2 K1 Krbf

N = 5 0.7566 2.1091 0.8440 1.0561
N = 10 0.5336 0.8285 0.8381 0.9848
N = 20 0.2862 0.4304 0.7731 0.8102
N = 40 0.1414 0.3782 0.6117 0.5752
N = 60 0.1008 0.3430 0.4350 0.4230
N = 80 0.0828 0.3453 0.3227 0.3230
N = 100 0.0732 0.3260 0.2479 0.2518
N = 150 0.0621 0.3136 0.1289 0.1298
N = 200 0.0562 0.3089 0.0836 0.0895
N = 300 0.0510 0.3153 0.0631 0.0658

(a) Average error

K2 K′
2 K1

N = 5 0.2836 -0.9971 0.2008
N = 10 0.4581 0.1587 0.1490
N = 20 0.6467 0.4688 0.0458
N = 40 0.7542 0.3425 -0.0634
N = 60 0.7616 0.1891 -0.0284
N = 80 0.7435 -0.0692 0.0010
N = 100 0.7092 -0.2948 0.0154
N = 150 0.5214 -1.4159 0.0071
N = 200 0.3721 -2.4522 0.0662
N = 300 0.2260 -3.7890 0.0416

(b) Average improvement rate
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(d) Average improvement rate

Figure 5.6: Average results over 100 experiments using the ξRBF kernels K1, K2 and
K ′

2, and the standard RBF kernel Krbf for different values of N . For all the results, a1 =
a2 = 1 and σn = 0.05. (a) and (c) correspond to mean errors. (b) and (d) correspond to
improvement rates over the standard RBF kernel. For (c) and (d), the color convention is:
blue for K2, green for K ′

2, red for K1 and black for Krbf.
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K2 K1 Krbf
a2 = a1 0.1165 0.5037 0.4953
a2 = 0.8a1 0.1170 0.4419 0.4274
a2 = 0.6a1 0.1112 0.4086 0.3717
a2 = 0.4a1 0.1051 0.3032 0.3328
a2 = 0.2a1 0.1071 0.1518 0.2613
a2 = 0 0.1040 0.0646 0.2033

(a) Average error

K2 K1
a2 = a1 0.7648 -0.0168
a2 = 0.8a1 0.7262 -0.0339
a2 = 0.6a1 0.7010 -0.0993
a2 = 0.4a1 0.6841 0.0887
a2 = 0.2a1 0.5901 0.4193
a2 = 0 0.4886 0.6820

(b) Average improvement
rate
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(d) Average improvement rate

Figure 5.7: Average results over 100 experiments using the ξRBF kernels K1 and K2, and
the standard RBF kernel Krbf for different values of a2

a1 ∈ [0, 1]. For all the results, N = 50,
a1 = 1 and σn = 0.05. (a) and (c) correspond to mean errors. (b) and (d) correspond to
improvement rates over the standard RBF kernel. For (c) and (d), the color convention is:
blue for K2, red for K1 and black for Krbf.
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5.4.5 Kernels versus noise

A third batch studies the effects of noise. In this batch N = 50 and a1 = a2 = 1 and

different noise-to-signal ratios σ
a1+a2

ranging from 0 to 1 are studied. The results are

available in Figure 5.8.

Unsurprisingly, all results become worse when the amount of noise is increased. The

ξRBF kernels perform comparably to the RBF kernel when the noise dominates the

signal (for K2, the improvement rate is at most 13.91% when σn
a1+a2 ≥ 0.5, i.e. σn ≥ a1

and σn ≥ a1). Note that the jagged aspect of the curves for high σn is explained by the

increased variance in the results due to noise.

In conclusion, ξRBF kernels incorporating several frequencies are a clear improve-

ment over ξRBF kernels with a single frequency when such prior-knowledge is available.

This is the case even when one of the frequencies largely dominates the others. The

study also confirms that the nature of the combination should be multiplicative (as in

Equation (4.17)) rather than additive (as in Equation (4.20)).

5.5 Prediction of zootomical data on a population of abalones

using a priori correlations between features and labels

In this section, we show the application of pRBF kernels presented in Section 4.4 on

real-life zoological data. The application consists in the prediction of the unit weight of

abalones (marine gastropod molluscs) from their morphological features. The dataset

publicly available from the UCI Machine Learning Repository4 contains data for 4177

abalones.

The morphological parameters are: the length of the abalone, i.e. the longest shell

measurement, in centimetres (feature f1); the width of the abalone, perpendicular to

the length, in centimetres (feature f2); the height of the abalone, with the meat inside,

in centimetres (feature f3); and the amount of rings visible on the shell (feature f4).

Therefore, a single instance consists in a quintuple (f1, f2, f3, f4, y) with the 4 morpho-

logical features of the abalone f1, f2, f3 and f4, and the total weight of the abalone

4http://archive.ics.uci.edu/ml/datasets/Abalone
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K2 K1 Krbf
σn = 0 0.1153 0.5015 0.4927

σn = 0.05(a1 + a2) 0.1440 0.5222 0.5000
σn = 0.1(a1 + a2) 0.2320 0.5749 0.5546
σn = 0.2(a1 + a2) 0.4336 0.7209 0.7018
σn = 0.3(a1 + a2) 0.6133 0.8454 0.8486
σn = 0.4(a1 + a2) 0.8093 0.9864 0.9961
σn = 0.5(a1 + a2) 0.9691 1.1134 1.1256
σn = 0.6(a1 + a2) 1.1633 1.2534 1.3169
σn = 0.7(a1 + a2) 1.3603 1.4008 1.4412
σn = 0.8(a1 + a2) 1.5201 1.5776 1.5929
σn = 0.9(a1 + a2) 1.6874 1.7176 1.7491
σn = a1 + a2 1.8062 1.8804 1.9136

(a) Average error

K2 K1
σn = 0 0.7660 -0.0180

σn = 0.05(a1 + a2) 0.7120 -0.0444
σn = 0.1(a1 + a2) 0.5817 -0.0366
σn = 0.2(a1 + a2) 0.3822 -0.0272
σn = 0.3(a1 + a2) 0.2772 0.0038
σn = 0.4(a1 + a2) 0.1875 0.0097
σn = 0.5(a1 + a2) 0.1391 0.0109
σn = 0.6(a1 + a2) 0.1167 0.0483
σn = 0.7(a1 + a2) 0.0561 0.0281
σn = 0.8(a1 + a2) 0.0457 0.0096
σn = 0.9(a1 + a2) 0.0353 0.0180
σn = a1 + a2 0.0561 0.0173

(b) Average improvement rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σ/(a
1
+a

2
)

a
v
e
ra

g
e
 e

rr
o
r

(c) Average error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ/(a
1
+a

2
)

a
v
e

ra
g

e
 i
m

p
ro

v
e

m
e

n
t 

ra
te

(d) Average improvement rate

Figure 5.8: Average results over 100 experiments using the ξRBF kernels K1 and K2, and
the standard RBF kernel Krbf for different values of the noise-to-signal ratio σn

a1+a2 ∈ [0, 1].
For all the results, and N = 50, a1 = a2 = 1. Conventions are the same as for Figure 5.7.
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y.

In Section 5.5.1, we present the correlation patterns between features and labels

wich can be expected a priori and show that they are validated by the actual data

distribution. The empirical results for a random, unbiased selection of the training data

are presented in Section 5.5.2 and in Section 5.5.3 for a biased selection of the training

data.

5.5.1 Feature-label correlation patterns

The prior-knowledge for this problem corresponds to simple geometrical intuition which

suggests that the weight y should be cubical correlated to the length f1, the width f2

or the height f3.

Figure 5.9 represents the weight y of the 4177 abalones plotted against a few mono-

mial combinations of the parameters. The monotonic increase of the weight w w.r.t.

the length f1 is clearly visible on Figure 5.9a. Figure 5.9b shows that the relationship is

in fact cubical, confirmed by the linear correlation between f3
1 and y. In addition, w is

monotonically increasing w.r.t. f1f2 (Figure 5.9c) and the relationship between f1f2f3

and w is linear (Figure 5.9d). Therefore, the above assumption are qualitatively con-

firmed by the plots. This justifies the use of the pRBF with monomials as the non-RBF

portion, in particular monomials of degree 3 in f1, f2 and f3.

Accordingly, this batch of experiments uses the pRBF kernel described in Section 4.4

incorporating the above prior-knowledge as monomials in f1, f2 and f3. For instance, if

we choose the monomial f1f2, the expression of the pRBF kernel product between the

feature vectors xa = (fa,1, fa,2, fa,3, fa,4) and xb = (fb,1, fb,2, fb,3, fb,4) is:

K(xa, xb) = exp
[
−γ
(
(fa,3 − fb,3)2 + (fa,4 − fb,4)2

)]
× fa,1fa,2 × fb,1fb,2 (5.7)

where γ > 0 is the RBF kernel bandwidth parameter.

5.5.2 Learning with few data

The type of SVM used was the ε-SVR with ε = 0.1. Results are compared in terms

of average absolute error. Training sets are created by randomly choosing N instances.
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Figure 5.9: Weight of the abalones (output label y) against several monomial combina-
tions of length (feature f1), diameter (feature f2) and height (feature f3). The linear and
polynomial relationships are clearly visible.

146



The C and γ parameters are adjusted every time by performing a grid search (values

yielding the best average results in 5-folds cross-validation are chosen).

Figure 5.10 shows a comparison of the results obtained with different pRBF kernels

and the standard RBF kernel. Each numerical result is an average value over 100 random

iterations. The monomials used for the pRBF kernels were f1, f2
1 , f3

1 , f1f2 and f1f2f3.

Every pRBF kernel systematically improves the results of the standard RBF kernel,

with the exception of the pRBF kernel with monomial f1 for which the rate of improve-

ment is between −6.02% and 9.18%. The best results are obtained with the degree 3

monomials f3
1 (rate of improvement between 15.19% and 41.45%) and f1f2f3 (rate of

improvement between 12.92% and 36.75%). The order of the monomials from worse to

best is: first the degree 1 monomial f1 which is the worse by far, then the degree 2

monomials f2
1 and f1f2, and finally the degree 3 monomials f1f2f3 and f3

1 .

The above order is consistent with the prior-knowledge available on the problem.

While a degree of 1 or 2 capture the monotonicity of the relationship between output

label and input features, only the degree 3 monomials are a faithful representation of the

cubic relationship between dimensions and weight. The fact that degree 2 monomials

perform better than degree 1 monomials is also expected since a quadratic relationship

is a better approximation of a cubic relationship than a linear relationship. Overall,

this is a confirmation that the most faithfully the pRBF kernel incorporates the prior-

knowledge, the better are the results.

The impact in terms of the required amount of training data is significant. On

this example, the required amount of training data is divided by more than 4 thanks

to the use of the pRBF kernel with proper prior-knowledge. Indeed, the pRBF kernel

associated to the monomial f3
1 with N = 10 training samples (average absolute error of

14.74%) performs better than the standard RBF kernel with N = 40 training samples

(average absolute error of 15.45%).

5.5.3 Learning with biased data

Another batch of similar experiments were conducted after a biased selection of the data

instead of the uniformly distributed random selection of Section 5.5.2. The training

sets are constituted by only selecting infant (sexually immature) abalones which are

on average smaller in size than adult abalones. Infant and adult abalones are used
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f1 f21 f31 f1f2 f1f2f3 1
N = 5 0.3713 0.2988 0.2284 0.2524 0.2589 0.3502
N = 10 0.2524 0.1776 0.1474 0.1742 0.1591 0.2516
N = 20 0.1604 0.1366 0.1215 0.1325 0.1319 0.1927
N = 40 0.1244 0.1198 0.1056 0.1144 0.1060 0.1543
N = 60 0.1203 0.1088 0.0991 0.1041 0.0975 0.1314
N = 80 0.1068 0.1021 0.0979 0.1001 0.1005 0.1154
N = 100 0.0999 0.0953 0.0920 0.1004 0.0945 0.1100

(a) Average error

f1 f21 f31 f1f2 f1f2f3
N = 5 -0.0602 0.1469 0.3480 0.2794 0.2607
N = 10 -0.0033 0.2939 0.4143 0.3077 0.3675
N = 20 0.1678 0.2911 0.3697 0.3126 0.3154
N = 40 0.1939 0.2235 0.3157 0.2589 0.3128
N = 60 0.0846 0.1720 0.2459 0.2077 0.2577
N = 80 0.0748 0.1156 0.1519 0.1329 0.1292
N = 100 0.0918 0.1337 0.1635 0.0873 0.1411

(b) Average improvement rate
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(d) Average improvement rate

Figure 5.10: Average results over 100 randomly selected training sets using the pRBF
kernel for different values of N and different monomial expressions. (a) and (c) correspond
to mean errors. (b) and (d) correspond to improvement rates over the standard RBF kernel
(i.e. when the monomial expression is 1). For (c) and (d), the color convention according
to the monomial expression used is: black for 1 (standard RBF kernel), dark blue for f1,
blue for f21 , light blue for f31 , red for f1f2 and green for f1f2f3.
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indiscriminately for testing. In practice, this could for instance happen if the abalones

used for the training data set where artificially cultivated and could not be given enough

time to reach maturity.

Figure 5.11 presents the numerical results obtained with this second batch of exper-

iments. Again, the pRBF kernels substantially improve the results obtained with the

stand RBF kernel with the degree 3 monomials offering the best improvements (except

for the smallest training set size N = 5 for which f1f2 performed the best). The best

rate of improvement is 35.78% obtained with the monomial f1f2f3 for N = 80.

A notable difference with the case of the unbiased training sets is that improvement

rates remain consistently high even when the training set becomes larger (up to 33.73%

for N = 100). This shows that the pRBF kernel with prior-knowledge allows for accurate

predictions even outside of the range of the training data which is usually impossible

for the standard RBF kernel, thus confirming the observations made in Section 4.4

Figure 4.6.

As a matter of fact, the best result obtained for N = 100 with the pRBF kernel on

biased training sets (an average error of 0.1082) is almost on a par with the best result

obtained with the pRBF kernel on unbiased training sets (0.0920) whereas the best

result obtained with the standard RBF kernel on biased training sets (0.1633) remains

considerably worse than its counterpart on unbiased training sets (0.1100).

5.6 Prediction of daily meteorological data using monthly,

seasonal and yearly statistics

This study is an application of the gRBF kernel presented in Section 4.5 to the prediction

of daily meteorological data using prior-knowledge in the form of monthly, seasonal and

yearly averages.

Data, prior-knowledge and learning algorithm are presented in Section 5.6.1. The

impact of labeled sets in the presence of a variable amount of data is studied in Sec-

tion 5.6.2. An empirical comparison between switching and shifting is proposed in Sec-

tion 5.6.3. Another empirical comparison between applying the spectral transformation

to the whole dataset or to the training data alone is proposed in Section 5.6.4.

In addition, due to the sometimes narrow gap between the performance curves and
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f1 f21 f31 f1f2 f1f2f3 1
N = 5 0.4448 0.3266 0.3454 0.3223 0.3412 0.4197
N = 10 0.3519 0.2731 0.2404 0.2909 0.2284 0.3393
N = 20 0.2770 0.2247 0.1847 0.2359 0.1840 0.2761
N = 40 0.2236 0.1938 0.1368 0.1567 0.1590 0.1936
N = 60 0.1653 0.1611 0.1400 0.1427 0.1318 0.1718
N = 80 0.1382 0.1467 0.1258 0.1320 0.1140 0.1775
N = 100 0.1439 0.1240 0.1289 0.1262 0.1082 0.1633

(a) Average error

f1 f21 f31 f1f2 f1f2f3
N = 5 -0.0598 0.2219 0.1771 0.2323 0.1871
N = 10 -0.0374 0.1950 0.2915 0.1427 0.3268
N = 20 -0.0033 0.1861 0.3309 0.1454 0.3333
N = 40 -0.1548 -0.0009 0.2932 0.1904 0.1785
N = 60 0.0379 0.0626 0.1853 0.1696 0.2331
N = 80 0.2215 0.1736 0.2913 0.2567 0.3578
N = 100 0.1189 0.2405 0.2108 0.2272 0.3373

(b) Average improvement rate
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(d) Average improvement rate

Figure 5.11: Average results over 100 training sets selected from infants abalones. Con-
ventions and notations are similar as for Figure 5.10.
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their apparent instability, a statistical validation of the relevance of the measurements

is presented in Section 5.6.5.

5.6.1 Data, prior-knowledge and learning algorithm

The data consists in daily average temperature measurements on a square grid of 100

locations in the UK over a period of 10 years from 1960 to 1969 included (hence 3653

days due to the presence of 3 bissextile years over the period). The 100 locations are

given by their geographical coordinates in the easting-northing system. The database

contains a total of 100× 3653 = 365300 data instances. Each data instance is an input-

output tuple (f1, f2, f3, y) where f1 (the date given in number of days elapsed from

01/01/1960), f2 (the easting coordinate) and f3 (the northing coordinate) are the input

features, and y (the temperature in degrees Celsius) is the output label. Features f2

and f3 corresponding to geographical coordinates have been normalized to fit in a range

from 0 to 10. The original data is publicly available from the UK Climate Projections

database5 upon request.

The task consists in predicting the daily temperature y from the 3 features f1, f2

and f3. A training set of size N randomly sampled from the database is used to create

a prediction model which is evaluated on a randomly sampled test set (disjoint from the

training set). The results are compared in terms of average absolute error.

The prior-knowledge available for this experiment consists in monthly (120 instances),

seasonal (40 instances) and yearly (10 instances) average values of the temperature over

the whole area. Preserving the notation for orthotopes introduced in Section 4.5.3.2,

each average value y over a period [da, db] where da is the day from which the period

starts and db the day at which the period ends translates into an orthotope:

O = R(da, db,−∞,+∞,−∞,+∞) (5.8)

and then, into an input-output pair (O, y) used as training data in the gRBF kernel.

The learning algorithm used in this study is the standard ε-SVR (with ε = 0.1).

The C and γ parameters are adjusted with a grid search combined with a 5-folds cross

validation. In the absence of explicit mentions, flipping as described in Section 4.5.3.1 is

5http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/download/daily/

time_series.html
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applied to the kernel matrix containing training and test data. Indeed, flipping performs

better than shifting as shown in Section 5.6.3 and applying the transformation on the

whole data improves generalizability as shown in Section 5.6.4.

Every numerical result in this study is an average over 100 training-testing cycles

with a random selection of the training and testing data. The size of every test set is

always 100.

5.6.2 Impact of labeled regions

In this section, we study the use of different labeled sets as prior-knowledge. First, we

compare results obtained when using sets corresponding to monthly, seasonal or yearly

averages (or no labeled sets at all). Next, we investigate the effects of using different

values for the parameter ρ (see Section 4.5.2.2 for a detailed explanation about the

parameter ρ).

Figure 5.12 shows the numerical results obtained with different sizes of training set

N and different labeled sets corresponding to monthly, seasonal, yearly averages or no

labeled sets at all, which is equivalent to using the standard RBF kernel. In this batch,

p = 1 (i.e. ρ = 0), therefore labeled sets are not modified according to interferences

with the training data.

Best results are obtained with labeled sets corresponding to monthly averages (im-

provement of 48, 63% for N = 5 compared to the RBF kernel), followed by seasonal

averages (improvement of 29, 61% for N = 5). The use of yearly averages yields results

comparable to the standard RBF kernel which is understandable since temperatures

follow a yearly cycle (thus a yearly average does not capture any variations). These

results are coherent with the fact that monthly averages contain more information than

seasonal averages which in turn contain more information than yearly averages.

The greatest improvement rates are obtained with small training sets. For larger

training sets (N ≥ 300) the results are fairly similar regardless of the label sets (im-

provement rates compared to the RBF kernel vary in a narrow range between −1.10%

and 2.82%). This illustrates that general prior-knowledge about average values becomes

less necessary as more specific data is available.

The improvements still hold if we count the labeled sets as additional training data

(N + 120 for monthly averages and N + 40 for seasonal averages). However, this com-
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monthly seasonal yearly none
N = 5 2.4795 3.3977 4.6156 4.8270
N = 10 2.4937 3.3943 4.5070 4.5808
N = 20 2.4915 3.3470 4.3360 4.2884
N = 40 2.4979 3.2130 3.9079 3.8684
N = 70 2.4787 2.9456 3.5300 3.4897
N = 100 2.4893 2.8388 3.2543 3.1639
N = 130 2.4764 2.7432 3.0043 2.9617
N = 160 2.4452 2.6375 2.7943 2.8538
N = 190 2.4262 2.5830 2.6925 2.7247
N = 220 2.4077 2.5002 2.6759 2.5916
N = 300 2.3202 2.4033 2.4807 2.4165
N = 400 2.2815 2.2499 2.3050 2.3151
N = 500 2.2271 2.1974 2.1946 2.2030

(a) Average error

monthly seasonal yearly
N = 5 0.4863 0.2961 0.0438
N = 10 0.4556 0.2590 0.0161
N = 20 0.4190 0.2195 -0.0111
N = 40 0.3543 0.1694 -0.0102
N = 70 0.2897 0.1559 -0.0115
N = 100 0.2132 0.1028 -0.0286
N = 130 0.1638 0.0738 -0.0144
N = 160 0.1432 0.0758 0.0209
N = 190 0.1096 0.0520 0.0118
N = 220 0.0709 0.0352 -0.0325
N = 300 0.0398 0.0055 -0.0266
N = 400 0.0145 0.0282 0.0043
N = 500 -0.0110 0.0025 0.0038

(b) Average improvement rate
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(d) Average improvement rate

Figure 5.12: Average results for different labeled sets and sizes of the training set N . For
all the results, p = 1 (i.e. ρ = 0). (a) and (c) correspond to mean errors. (b) and (d)
correspond to improvement rates over the standard RBF kernel. For (c) and (d), the color
convention is: blue for monthly average sets, red for seasonal average sets, green for yearly
average sets and black for none (standard RBF kernel).
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parison is fictitious since in practice labeled set and ordinary training data are not

interchangeable as labeled sets come from prior-knowledge and not training data.

The required amount of training data is greatly reduced by the use of labeled sets.

For instance, the standard RBF kernel needs 300 training samples in order to beat the

gRBF kernel with 5 training samples and monthly average sets, or 100 samples to beat

the gRBF kernel with 20 training samples and seasonal average sets.

The second batch of experiments studies the impact of the parameter ρ ≥ 0 over

classification results. As described in more details in Section 4.5.2.2, we propose to deal

with contradictions between training data and labeled sets by modifying the labeled

sets according to the training data. This is done by subtracting from the labeled sets

open balls of radius ρ centered around the training data. Since the level of interaction

between data and labeled sets depends on the kernel parameter γ, it is desirable to

control ρ indirectly through another parameter p = exp(−γρ2) ∈]0, 1] quantifying the

maximal interaction between training data and labeled sets (see Section 4.5.2.2 for more

details).

Figure 5.13 shows the average results obtained with different values of p (hence

different values of ρ). The size of training sets is fixed (N = 40). With monthly averages,

large values of p (higher than 0.6) work best, corresponding to small modifications for

the labeled sets. With seasonal averages, smaller values of p (between 0.1 and 0.4)

work best, corresponding to larger modifications for the labeled sets. This is consistent

with the fact that monthly averages are a more faithful approximation of the daily

temperatures than seasonal data.

A smaller p has the effect to reduce the labeled sets. Therefore, when p gets close to 0,

the gRBF kernels degenerates into standard RBF kernels which explains the degradation

of the results observed with very small p (except for the gRBF kernel with yearly averages

which already perform on a par with the RBF kernel). This also implies that any

potential negative impact associated to a bad choice of the parameter p is bounded by

the performance of the RBF kernel.

In conclusion, this study has confirmed that adequate labeled sets can significantly

improve the performance of the standard RBF kernel. The parameter p (related to ρ)
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monthly seasonal yearly
p = 1 2.4935 3.1312 3.9186
p = 0.8 2.4876 3.1459 3.9008
p = 0.6 2.4840 3.1319 3.8541
p = 0.4 2.5187 3.0094 3.8314
p = 0.2 2.6121 2.9833 3.8059
p = 0.1 2.7248 2.9818 3.8403
p = 0.05 2.8361 3.0352 3.8560
p = 0.025 2.9330 3.1065 3.8673
p = 0.0125 3.0519 3.2179 3.8818

(a) Average error
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(b) Average error

Figure 5.13: Average results for different values of p and labeled sets. For all the results,
N = 40. The color convention is: blue for monthly average sets, red for seasonal average
sets and green for yearly average sets.
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can also help getting the better results. It should be set to a high value (closer to 1) if

the labeled sets are an accurate description of the data and lower (closer to 0) if they

are a fuzzy description. Otherwise, we do not expect a critical degradation of the results

from choosing a bad parameter p.

5.6.3 Shifting versus flipping

In general, gRBF kernels are not PD kernels. In Section 4.5.3.1, two different spectral

methods applied to the kernel matrix have been proposed to solve the problem: flipping

and shifting. The next batch of experiments provides an empirical comparison of the

two methods.

The results of this comparative study are given in Figure 5.14. p was set to p = 1

and only monthly average sets were used. The interpretation of the results is very

straightforward: flipping performs consistently and significantly better than shifting.

Shifting even yields worse results than the standard RBF kernel (which is PD and

requires no spectral transformation) when N ≥ 300.

5.6.4 Improving generalizability

Applying the spectral transformation (shifting or flipping) on the training data alone

poses a problem with respect to the generalizability to test data on which the transfor-

mation was not performed. In this last batch, we compare flipping (the better of the

two methods according to Section 5.6.3) the training data only to flipping the whole

data set including training and test data.

Figure 5.15 recapitulating the results from this last batch show that applying the

transformation on the whole data does not have a significant impact when N is small.

The improvement becomes more obvious when the training data set becomes larger. In

particular, we observe that using the gRBF kernel without applying the transformation

to test data ends up giving worse results than the RBF kernel when lots of training data

are used (N > 300).
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flipping shifting
N = 5 2.4795 2.7438
N = 10 2.4937 2.7415
N = 20 2.4915 2.7150
N = 40 2.4979 2.7561
N = 70 2.4787 2.7324
N = 100 2.4893 2.7435
N = 130 2.4764 2.7352
N = 160 2.4452 2.7268
N = 190 2.4262 2.6947
N = 220 2.4077 2.7173
N = 300 2.3202 2.6291
N = 400 2.2815 2.5431
N = 500 2.2271 2.4549

(a) Average error

flipping shifting
N = 5 0.4863 0.4316
N = 10 0.4556 0.4015
N = 20 0.4190 0.3669
N = 40 0.3543 0.2875
N = 70 0.2897 0.2170
N = 100 0.2132 0.1329
N = 130 0.1638 0.0765
N = 160 0.1432 0.0445
N = 190 0.1096 0.0110
N = 220 0.0709 -0.0485
N = 300 0.0398 -0.0880
N = 400 0.0145 -0.0985
N = 500 -0.0110 -0.1144

(b) Average improvement
rate
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(d) Average improvement rate

Figure 5.14: Average results for different N and spectral transformation methods. For
all the results, labeled sets corresponding to monthly averages are used and p = 1 (i.e.
ρ = 0). (a) and (c) correspond to mean errors. (b) and (d) correspond to improvement
rates over the standard RBF kernel without labeled sets (values from Figure 5.12). The
color convention is: blue for flipping, red for shifting, and black for the standard RBF.
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training training+test
N = 5 2.4795 2.5476
N = 10 2.4937 2.4954
N = 20 2.4915 2.5118
N = 40 2.4979 2.5397
N = 70 2.4787 2.5194
N = 100 2.4893 2.5512
N = 130 2.4764 2.5350
N = 160 2.4452 2.5470
N = 190 2.4262 2.5505
N = 220 2.4077 2.5197
N = 300 2.3202 2.4997
N = 400 2.2815 2.4274
N = 500 2.2271 2.4400

(a) Average error

training training+test
N = 5 0.4863 0.4722
N = 10 0.4556 0.4552
N = 20 0.4190 0.4143
N = 40 0.3543 0.3435
N = 70 0.2897 0.2780
N = 100 0.2132 0.1937
N = 130 0.1638 0.1441
N = 160 0.1432 0.1075
N = 190 0.1096 0.0640
N = 220 0.0709 0.0277
N = 300 0.0398 -0.0344
N = 400 0.0145 -0.0485
N = 500 -0.0110 -0.1076

(b) Average improvement rate
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(d) Average improvement rate

Figure 5.15: Comparison of average results for different N between applying flipping to
the training data alone or to the whole data including test data. For all the results, labeled
sets corresponding to monthly averages are used and p = 1 (i.e. ρ = 0). (a) and (c)
correspond to mean errors. (b) and (d) correspond to improvement rates over the standard
RBF kernel (values from Figure 5.12). The color convention is: blue for training+testing,
red for training only and black for the standard RBF.
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5.6.5 Statistical relevance of the measurements

In this section, we estimate the reliability of the numerical results presented in this

study. Indeed, numerical results from this study and corresponding plotted curves may

seem very close and unstable. Thus, one may legitimately question the validity the

numerical results. To clarify the issue, we compute intervals of confidence for the data

using results from the probability theory.

Every individual measurement of the average absolute error (i.e. for a single training-

testing cycle) has a measured standard deviation of σ1 = 0.2 or less. Therefore, an

average result over 100 independent iterations has a standard deviation of:

σ100 =

√
1

100
σ1 =

1

10
σ1 = 0.02 (5.9)

Chebyshev’s inequality states that if a random variable X has a mean µ and a

standard deviation σ, then for any k > 0:

P(|X − µ| ≥ kσ) ≤ 1

k2
(5.10)

Applied to our averages over 100 iterations X100 with mean µ100 and standard deviation

σ100 = 0.02, Equation (5.10) becomes:

P(|X − µ100| ≥ k × 0.02) ≤ 1

k2
(5.11)

With k = 5, we get that the chance that a measurement is off by more that 0.1 is

lower than 4%. 0.1 being approximately the order of magnitude of the space between

two adjacent curves in this study, this ensures that the vast majority of the measures

are significant.

With k =
√

2, we get that the chance that a measurement is off by more that ≈ 0.03

is lower than 50% which ensures that more than half of the measures can be considered

as precise.
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Chapter 6

Application: Automatic Grading

of Invasive Breast Carcinoma

from Histopathological Images

6.1 Introduction

In this chapter, we propose a complete system for Breast Cancer Grading (BCG) from

Haematoxylin-Eosin (H&E) stained surgical biopsies. It specifically addresses the grad-

ing of Nuclear Atypia (NA), a central component of most BCG procedures. This work

also provides an example of application of the KE-RBF framework to complex, real-word

situations.

A short introduction to BCG from H&E stained biopsies is first given in Section 6.2,

and the challenges related to computer-aided BCG are presented with a review of the

state-of-the-art in Section 6.3.

Our BCG system can be decomposed into 3 independent components answering to

specific challenges: a robust detection and extraction of cell nuclei with an approach

combining a wide range of information including color, texture, scale and geometry

(Section 6.4); a local frame-level grading of NA using the gRBF kernel to combine

annotated medical data and formalized medical knowledge (Section 6.5); and an efficient

strategy based on dynamic sampling and computational geometry tools to explore large

images for the grading of entire biopsy slides within a clinically acceptable timeframe
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(Section 6.6).

The BCG system is a component of the Cognitive Microscope (MICO) project1.

MICO is an ongoing initiative funded by Agence Nationale de la Recherche (a French

institution tasked with funding scientific research) and involving academic research lab-

oratories2,3, industrial partners4,5,6 and pathologists from a university hospital7. There-

fore, strong emphasis is put on the validity of the approach from a medical standpoint

and its viability in a real clinical environment.

Accordingly, an empirical evaluation on clinical data provided and annotated by

experienced anatomopathologists from the Pitié-Salpêtrière University Hospital in Paris

is available for each component of the system. The H&E stained breast cancer slides

from the dataset where digitized using an APERIO ScanScope c© slide scanner and

annotated using the TRIBVN ICS-framework c© virtual slide browser.

To our best knowledge, our system is the first proposing a complete, full-slide ap-

proach to BCG. It is scheduled for actual clinical deployment with the whole MICO

platform 2012 for validation purposes in fall.

6.2 Breast cancer grading from H&E stained surgical biop-

sies

Breast cancer accounts for one quarter of all cancers among the female population

causing nearly half a million deaths every year [20]. Fortunately, with early enough

detection, it is also one of the cancers with the highest rate of recovery. Therefore, early

and accurate diagnosis of breast cancer stands as a strong medical requirement.

In recent years, histopathology which is the microscopic analysis of biological tissues

became the gold standard for the diagnosis and prognosis of breast cancer. BCG is a

codified protocol attributing a numerical grade according to the degree of advancement

(i.e. malignancy) or the cancer, and is performed routinely in clinical practice [21]. The

1http://ipal.cnrs.fr/project/mico
2Image and Pervasive Access Lab (IPAL), Université Joseph Fourier, Grenoble, France
3Laboratoire d’Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie, Paris, France
4Thales Communications & Security, France
5AGFA-HealthCare, Belgium
6TRIBVN, France
7Groupement Hospitalier Universitaire de la Pitié-Salpêtrière (GHU-PS), Université Pierre et Marie

Curie, Paris, France
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state-of-the-art BCG procedures require H&E stained slides obtained from a surgical

breast biopsy. BCG from surgical breast biopsies plays a particularly important role

due to the prognostic value of the grading, largely influencing decisions for the follow-up

treatment of the patient.

The most common type of breast cancer is the breast carcinoma (cancer of the

epithelial cells). Up to 75% of diagnosed breast cancers are invasive ductal carcinomas

[63]. Accordingly, this study is restricted to the grading of invasive ductal carcinoma.

The different types of breast cancer follow different BCG procedures.

In this introductory section on BCG, we first present the general workflow of the

preparation of a H&E stained breast histopathology slide in Section 6.2.1. Next, the

standard BCG procedures are presented in Section 6.2.2 with an emphasis on the grading

of NA, a central component of BCG procedures which is the focus of our study.

6.2.1 Slide preparation workflow

The different steps for the preparation of an H&E stained surgical breast biopsy slide

starting from the surgically extracted tumor are illustrated on the workflow diagram in

Figure 6.1.

Precision in the process is of paramount importance in order to get a stable quality

of result: slight changes in conditions such as the thickness of the layer or the time

spent in the staining solutions can significantly alter the results. Even with the greatest

precautions, some instability in the final quality of the image is unavoidable in daily

clinical practice and needs to be dealt with, which constitutes a challenge as presented

in Section 6.3.1.1.

Note that the digitization of the slide, although available in medical research, is still

uncommon in today’s clinical practice which is reliant on traditional optical microscopes.

6.2.2 BCG procedures for invasive ductal carcinoma

Several BCG systems with a recognized diagnostic and prognostic value can be used

for invasive ductal carcinoma [79]. A BCG system is a template used to attribute

a numerical score to different criteria. Several BCG systems exist for the grading of

invasive ductal carcinoma [79]. Although specifics (such as the interpretation of the
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Figure 6.1: Slide preparation workflow diagram. Photographs reproduced with permission
from Service d’Anatomopathologie, Groupement Hospitalier Pitié-Salpetrière, Paris, France.

163



numerical scales used for the scores) can vary from a grading system to another, most

popular grading systems are based on the following 3 criteria illustrated on Fig 6.2.

Nuclear atypia (NA) - Cell nuclei in malignant tumors often develop morphological

irregularities. Accordingly, the study of the abnormal appearance of cell nuclei is

a central aspect of BCG systems. The morphology of cell nuclei is scrutinized for

any sign uncharacteristic of normal, non-cancerous cells. The more atypical the

nuclei, the higher the score.

Structure of the tumor - In the earlier stages of the cancer, the tumor will usually

proliferate creating gland-like patterns. This structure is progressively lost as the

cancer reaches more advanced stages. Therefore, on a surgical biopsy preserving

the original structure of the tissues, a score can be given according to how well

differentiated a tumor is. A well differentiated tumor is given a low score whereas

a poorly differentiated tumor is presumed more malignant and given a high score.

Mitotic count - The frequency of mitosis (dividing cells) is a sign of the speed at which

a tumor is spreading. A low mitotic count reflects a slowly developing cancer

whereas a high mitotic count indicates an aggressively spreading tumor.

A BCG system called the “Nottingham” system [22] is well-known for being widely

used in North America. It gives a score from 1 (least malignant) to 3 (most malignant) to

3 criteria: “nuclear pleomorhpism” (a particular subtype of NA), “tubular formations”

(another name for glandular structures) and “mitotic count”.

This present study is restricted to the assessment of NA. Unlike the other criteria

which require a surgical biopsy preserving the structure of the tissues, the assessment

of NA can be performed on any type of biopsy such as fine needle aspiration biopsies.

Accordingly, it is a central aspect of most BCG studies.

The study of NA is based on morphological features related to the size, shape and

interior of the nuclei. Therefore, automatic tools able to reliably detect and extract

cells from histopathological images are a strong requirement from computer aided BCG

systems. More specific details on the assessment of NA are given in Section 6.5.
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(a) A benign tumor with small and regu-
lar nuclei.

(b) A malignant cancer showing large and
irregular nuclei.

(c) A well differentiated tumor shows
glandular formations.

(d) A poorly differentiated tumor in more
homogeneous.

(e) A few mitotic nuclei circled in white.

Figure 6.2: Main scoring criteria of BCG systems. (a)-(b) low and high nuclear atypia,
(c)-(d) structured and amorphous tumor and (c) examples of mitosis.
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6.3 Computer-aided BCG systems

The current clinical practice for BCG is still reliant on observations with an optical

microscope. As proved by Dune and Going [18], the grading of NA is a tedious and time

consuming task which outcome is highly inconsistent even for well trained specialists.

Therefore, the practice would largely benefit from techniques susceptible to improve the

stability of the diagnosis.

Meanwhile, the recent developments in digital histopathology have lead to the rel-

ative maturity of virtual slide technologies: full slides digitized using slide scanners

can be viewed and annotated using virtual slide browsers such as the TRIBVN ICS-

framework c©8. Such new technologies can be used to partially or fully automate the

process with the main benefit of improving the robustness of the grading.

In Section 6.3.1, we discuss the specific technical challenges related to the grading

of NA from H&E stained surgical biopsies. In Section 6.3.2, we give a review of the

current state-of-the-art regarding this task and modality.

6.3.1 Technical challenges

Three major challenges proper to the task and image modality can be identified: a

computer vision challenge due to the complexity of the images making the extraction of

the cell nuclei difficult, a machine learning challenge due to the scarcity of the medical

data available, and a computational challenge due to the very large size of the full slide

images.

6.3.1.1 Complexity of the images

H&E stained surgical breast cancer slides present particularly steep challenges compared

with other types of biopsies mainly due to the great diversity of the situations encoun-

tered. High-magnification H&E breast cancer micrographs are given in Figure 6.3 to

illustrate this diversity (note that the micrographs used for actual grading have a wider

field).

In particular, we can point out: the heterogeneity of the nuclei and the background,

the uneven and low object-background contrast (see Figure 6.3a), and the frequent

8website: http://www.tribvn.com

166



overlaps between the nuclei (see Figure 6.3b).

Moreover, breast ductal carcinoma are recognized for being a very heterogeneous

group with regard to pathological features [63]. Therefore, the morphology of nuclei

can drastically change according to the histological grade (i.e. malignancy of the can-

cer): nuclei from lower grade tumors (Figure 6.3c and Figure 6.3e) are typically much

smaller, rounder and homogeneous compared to higher grade tumors (Figure 6.3d and

Figure 6.3f) which can be very irregular.

Finally, the differences in slide preparation techniques and staining methods between

hospitals can result in significant visual differences including color and texture as visible

between Figure 6.3c and Figure 6.3d from the National University Hospital (NUH) in

Singapore, and Figure 6.3e and Figure 6.3f from the Pitié-Salpêtrière University Hospital

(PSL) in Paris. Accordingly, robust algorithms able to deal with the overlaps and the

high variability in the images are necessary.

6.3.1.2 Scarcity of medical data

The current clinical practice involves traditional optical microscopes. The pathologist

browses the entire slide at different resolutions and chooses a few frames for the grad-

ing, following an unrecorded procedure. The entire procedure results in a BCG report

only indicating the numerical scores of the tumor. All additional information such as

the specific frames chosen or the specific observations leading to the final grading is

lost. This is unlike other image modalities such as mammograms (x-rays) or sonograms

(ultrasounds) which can easily be annotated.

As a consequence, annotated breast cancer slides which can be used for machine

learning are difficult to obtain. Considering the complexity of the BCG task, constituting

a database covering a comprehensive set of possible cases is impractical if not infeasible.

Instead, most of the knowledge used for grading needs to be formalized from the expertise

of the pathologist rather than statistically extracted from an exhaustive database of cases

with standard supervised learning methods.

6.3.1.3 Very large images

A typical breast cancer slide represents a very large amount of data. As illustrated on

Figure 6.4, the area of the neoplasm (tumor) on a slide is usually much larger than a
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(a) Manually outlined nuclei. (b) Touching and overlapping nu-
clei.

(c) NUH hospital, low grade. (d) NUH hospital, high grade.

(e) PSL hospital, low grade. (f) PSL hospital, high grade.

Figure 6.3: High magnification H&E breast micrographs corresponding to 57.75µm ×
57.75µm windows covering approx. 1/25th of a frame typically used for grading. (a) Nuclei
have heterogeneous interiors and uneven object-background contrast. Some nuclei with
particularly poor object-background contrast (thinner outline) are easily missed. (b) The
visual identification of nuclear boundaries is challenging due to frequent overlaps between
nuclei. (c-f) The aspect of nuclei can largely change according to the grade of the cancer or
subtle differences in slide preparation techniques.
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Figure 6.4: Whole slide, neoplasm and 256µm × 256µm high-resolution frame typically
used for the grading of NA.
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high-magnification frame typically used for the grading of NA. Although specific figures

will vary according to slides, tumors larger than 1cm2 are common, which approximately

corresponds to 40× 40 = 1600 frames.

The assessment of NA must be based on the region showing the highest grade of

NA in the tumor. An exhaustive analysis of the entire tumor in order to find the high-

est grade frames is impractical due to time constraints. Therefore, a slide exploration

method able to quickly and reliably find the highest grading frames must be imple-

mented.

6.3.2 State-of-the-art review

The problem of computer-aided breast cancer diagnosis has already been the focus of

several works. For reference, a broad overview is available in Subramaniam et al. [77]. A

majority of the previous work deals with other modalities than histopathological images

such as x-ray mammograms.

A comparatively smaller amount of methods is related to the diagnosis of breast

cancer from histopahological images. Gurcan et al. [26] have compiled a more recent

review specific to histopathology (though not limited to breast cancer). However, the

largest part deals with Fine Needle Aspiration (FNA) biopsies, a less challenging type of

biopsy which consists in well-separated cell nuclei over a well-contrasted background on

a much smaller image. A small amount of cells is extracted with a needle and deposited

on a clean glass slide. With FNA biopsies, the objective is not to perform a precise

grading with a prognostic value but rather to detect the presence of cancerous cells.

Among the methods dealing with FNA biopsies we can note the early work from

Schnorrenberg et al. [64, 65] based on receptive fields for the detection of nuclei and

a neural network to classify the individual nuclei as cancerous or non cancerous, the

method from Street [76] segmenting nuclei with edge detection techniques and an el-

lipsoidal approximation by generalized Hough transform, and the system from Estévez

et al. [19] using the texture of nuclei and fuzzy-finite state machines to classify the

individual nuclei.

Methods for the extraction of cell nuclei were also proposed on a number of other

modalities. This includes the work by Yang et al. [97] on time-lapse fluorescence image

sequences in which nuclei are bright objects on a dark background, so they can be
170



easily extracted from background by thresholding. Yang et al. [96] also proposed a

method based on Active Contour (AC) models to accurately delineate lymphocytes on

blood smears which present a clear image background so cell boundaries can be easily

identified.

The relevant previous work on H&E stained breast biopsy images presented below

can be divided into the following categories according to their main focus: methods

dealing with the detection of cell nuclei, methods also addressing the problem of their

accurate extraction (delineation of their boundaries) and methods focused on providing

a diagnosis of the pathology.

6.3.2.1 Detection of nuclei

A number of methods are aimed at the detection of cell nuclei from H&E stained can-

cer biopsies which is a relatively easier problem than their precise extraction. Most of

these works are based on adaptive thresholding on the RGB image. A system able to

label several histological and cytological microstructures in high resolution frames of

H&E stained breast cancer slides, including different types of cell nuclei was proposed

by Petushi et al. [56, 57]. The method uses Otsu thresholding and morphological opera-

tions. Sertel et al. [70] also proposed a method able to detect nuclei of centroblast cells

(large malignant cells) on H&E stained histology images of follicular lymphoma. The

color band having the highest contrast is selected and a locally adaptive thresholding is

performed.

6.3.2.2 Extraction of nuclei

Previous works aimed at accurately delineating nuclei on H&E stained biopsies are usu-

ally based on image gradient. Ali and Madabhushi [1] proposed an AC-based extraction

method using a watershed segmentation for the initialization. A computationally effi-

cient method has been proposed by Dalle et al. [10] using local polar transforms of the

gradient field of the original image. Recently, Kulikova et al. [35] proposed a stochastic

method based on a Marked Point Process (MPP) with AC models and object shape

priors.
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6.3.2.3 Diagnosis of breast cancer

A number of previous works, which are not BCG systems per se, are able to differentiate

between normal tissue and cancerous tissue from a single high-magnification frame.

Doyle et al. [16] used geometrical features from the spatial distribution of the nuclei,

and Wang and Wan [90] used geometrical features and SVMs with asymmetrical margins.

Oger et al. [52] proposed a rare type of application focusing on the analysis of the

whole slide at low magnification. Low resolution analysis of the whole slide is neces-

sary in order to spot the relevant tumoral tissues from other tissues. The system is

able to distinguish regions corresponding to invasive ductal carcinoma, invasive lobular

carcinoma, colloid carcinoma and fibroadenoma.

So far, Dalle et al. [9, 10] proposed the only method presented as a grading solution.

It claims to perform BCG on a single frame following the Nottingham system. Nuclear

pleomorphism (a subtype of NA in the jargon of the Nottingham system) is graded by

classifying each of the nuclei as low, medium or high grade. Unfortunately, it reflects a

number of misunderstandings from the medical standpoint: for instance, it considers a

frame-based problem whereas BCG is a slide-based procedure and is based on a medically

incorrect interpretation of the notion of nuclear pleomorphism.

6.3.2.4 Discussion and identification of gaps

First, the previous “diagnostic” applications able to label a single frame as cancer or

non-cancer do not have real clinical relevance for grading purposes. Without denying

the interest of such work from the computer vision standpoint, the clinical significance of

performing BCG is not to diagnose if the tissue is tumoral (which is already established

since the biopsies are obtained from surgically extracted tumors), but rather to grade

the severity of the cancer for prognostic purposes.

Moreover, the previous works do not consider the problem posed by the analysis

of very large images. They consider a frame-based problem whereas actual BCG is a

slide-based problem. The only slide-based method by Oger et al. [52], which is not a

grading system, deals with the whole slide at low-magnification and does not provide a

solution for processing the entire slide at high-magnification.

To our best knowledge, none of the previous methods on the detection and extraction
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of nuclei was proven to perform well with H&E stained images representing high-grade

(malignant) cancers and examples of good results are only available for images present-

ing low histological grades and isolated nuclei. This is a great limitation for clinical

applications which require good results with all histological grades including the more

challenging high grades.

In our opinion, the reliance on the image color intensity and gradient field alone as

in the previous methods is not sufficient to deal with the complexity of the H&E stained

breast surgical biopsy images and in particular the irregularity of the high grade images

as detailed in Section 6.3.1.1.

This provides a motivation to our approach detailed in Section 6.4 consisting in

incorporating additional, higher-level information such as texture, scale and geometry

with a machine learning framework. The resulting image modality has characteristics

stable enough to allow for an accurate extraction of the nuclei robust to variations in

histological grades or other conditions affecting the aspect of the images.

A thorough empirical comparison available in [35] of state-of-the-art methods on

clinical data validated by pathologists suggests their MPP-based approach gives the

best overall performances for detection and extraction by a good margin. Accordingly,

the final extraction of nuclei from the new image modality is performed using an MPP-

based method as described in Section 6.4.1.4.

6.4 Extraction of cell nuclei

In the current and following sections, we present our complete solution for the automatic

grading of NA from H&E stained surgical breast cancer slides. Our system can be

decomposed into 3 independent components: the detection and extraction of cell nuclei

(Section 6.4), the local grading of NA on individual high-magnification frames using

annotated medical data and formalized medical knowledge (Section 6.5), and the grading

of full slides (Section 6.6).

As pointed out in Section 6.3.1.1, H&E stained surgical biopsies present a particu-

larly steep computer vision challenge. A number of methods have already been proposed

for the automatic detection and extraction of nuclei from histopathological images and

are reviewed in Section 6.3.2. Several methods are able to reliably detect isolated nuclei
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or accurately extract them from comparatively less challenging images such as FNA

biopsies which present a clear background or biopsies with low histological grades which

present regular nuclei. However, to our best knowledge, no method is yet able to accu-

rately and reliably extract the nuclei from images covering a wide range of histological

grades. Therefore, previous methods lack the robustness required for clinical applica-

tions.

In this section, we propose a robust method for the extraction of nuclei from H&E

stained surgical breast cancer slides. Our approach consists in substituting the original

H&E image with a new image modality created using a wide variety of information

from the original image including: color, texture, scale and geometry. The new image

modality is a grayscale map where the value of each pixel is a probability estimate

(between 0 and 1) indicating whether or not the pixel belongs to a nuclei. A fully detailed

description of the method is available in Section 6.4.1. Regardless of the histological

grade, the resulting modality presents stable characteristics including a strong object-

background contrast, and homogeneous nuclei and background, greatly facilitating the

subsequent extraction of the nuclei.

The actual extraction is performed from the new image modality using a method

based on MPP, a methodology for the extraction of multiple, arbitrarily-shaped objects

from images using shape priors [34]. The MPP-based method used in this paper is able

to deal with overlapping objects through the use of shape priors.

A validation proposed in Section 6.4.2 on real clinical data provided and annotated by

pathologists from different cases of breast cancer representing a wide range of histological

grades shows that our method greatly improves the the detection of the nuclei and the

accuracy of their extraction.

6.4.1 Method

Our method involves the creation of a grayscale map incorporating color, texture, scale

and geometrical information from which the nuclei are extracted using an MPP-based

approach. The process can be divided into 4 successive steps:

1. First, the haematoxylin and the eosin from the H&E stain are separate by applying

a color deconvolution to the original H&E image (Section 6.4.1.1).
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2. Then, a first probability map is computed from local features based on color,

texture and scale. The probability estimates associated to each pixels are obtained

by using SVM classification and rescaling the output (Section 6.4.1.2).

3. A second probability map is then computed using similar methods from the pre-

vious local features and new geometrical features. The geometrical features are

computed using the first map. The addition of geometrical information allows a

significant intra-nuclear and background noise reduction (Section 6.4.1.3).

4. Finally, the extraction of nuclei is performed from the second map using an MPP-

based method described in Section 6.4.1.4.

The different steps are summarized on the workflow diagram in Figure 6.5.

6.4.1.1 H&E color deconvolution

First, a color deconvolution as described in [60] is applied in order to separate the

haematoxylin and the eosin from the original H&E stain. Mathematically, it can be

summarized as a change of basis from the original RGB basis BRGB = I3 (the 3-by-3

identity matrix) to a new basis of normal vectors BHE = (~h,~e, ~r). ~h (resp. ~e) is a vector

of 3 elements corresponding to the average color of haematoxilin (resp. eosin) stains in

the RGB system and ~r is a complementary color such that:

~h⊗ ~h+ ~e⊗ ~e+ ~r ⊗ ~r = ~1 (6.1)

where ⊗ designates the component-wise product of vectors. In practice, if (6.1) yields

negative components for ~r, we take 0 instead.

The specific values of ~h and ~e depend on several factors such as the specific solutions

used for staining, the thickness of the cut or the microscope/slide scanner used for the

acquisition of the image. For an optimal quality of results, our values are calibrated

using slides stained with only one of the colors but otherwise prepared and digitized by

the pathologists in the same conditions as the H&E slides.

As illustrated on Figure 6.6, the deconvolution uses colors from the the monochro-

matic sample slides to separate the haematoxylin and eosin from the original H&E

image. The channel corresponding to the complementary color ~r contains only residual
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Figure 6.5: Workflow diagram for the extraction of nuclei from H&E stained histopatho-
logical images.
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(a) Monochromatic eosin (top) and
haematoxilin (bottom) slides for calibra-
tion.

(b) H&E stained frame.

(c) Isolated eosin response mostly reveal-
ing stroma.

(d) Isolated haematoxilin response
mostly revealing nuclei.

Figure 6.6: Color deconvolution applied to an H&E stained 256µm×256µm frame typically
used for grading.
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noise and is discarded.

6.4.1.2 Map from local features

(a) LT5 × E5 at 1:1 scale (b) LT5 × E5 at 1:2 scale (c) LT5 × E5 at 1:4 scale

(d) LT5 ×W5 at 1:1 scale (e) LT5 ×W5 at 1:2 scale (f) LT5 ×W5 at 1:4 scale

Figure 6.7: Example of local texture feature corresponding to two different kernels at
different scales on a high-magnification portion of the haematoxylin image.

During this step, the images obtained from the color deconvolution are used to com-

pute a total of 120 local features (60 from the eosin image and 60 from the haematoxylin

image) for every pixel using texture information at different scales. Then, a probability

estimate is computed for each pixel based on SVM classification and rescaling of the

output.

The local features are based on Laws’ texture measures [39] which are the response

to a set of 5-by-5 convolution kernels. The 5-by-5 kernels are generated from 5 different
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1-by-5 base kernels:

L5 = (1, 4, 6, 4, 1)

E5 = (−1,−2, 0, 2, 1)

W5 = (−1, 2, 0,−2, 1)

S5 = (−1, 0, 2, 0,−1)

R5 = (1,−4, 6,−4, 1)

(6.2)

A total of 25 different 5-by-5 kernels are computed by taking the product of every vertical

5-by-1 kernel with every horizontal 1-by-5 one. The 5-by-5 kernels are applied at every

pixel to extract 25 features which are then combined into 15 rotationally invariant

features after normalizing by the output of the LT5 × L5 kernel and smoothing with a

Gaussian kernel of standard deviation σ = 1.5 pixels.

The same process is repeated at 4 different scales using low-pass filtering with Lanc-

zos filters [17]. In practice, local texture features are computed at 1:1, 1:2, 1:4 and

1:8 scales for every pixel after resampling the 5-by-5 convolution kernel into 10-by-10,

20-by-20 and 40-by-40 convolution kernels with the following 2-dimensional filter:

L(x, y) = l(x)l(y) (6.3)

with:

l(x) =


3 sin(πx) sin(πx/a)

π2x2 if x ∈ [−3, 3]

0 otherwise

(6.4)

An illustration of the result for 2 specific feature at different scales is given in Figure 6.7.

For every pixel represented by its feature vector ~x, its probability pn(~x) of belonging

to a cell nuclei is obtained in 2 steps. First, the class of the pixel is predicted using

SVM classification, then the output of the SVM is rescaled into a probability estimate

belonging to [0, 1] using a softmax transform.

We use the C-SVM with the RBF kernel Krbf. The resulting labeling model f(~x) =∑N
i=1 αiKrbf(~x, ~xi) + b is an affine combination of kernel sections. The training sets are
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created by selecting pixels from images where the nuclei have been manually delineated

by pathologists.

Following a method detailed in [61], the output f(~x) ∈ R is rescaled into a probability

estimate pn(~x) ∈ [0, 1] using a softmax transform:

pn(~x) =
1

1 + exp f(~x)
σf

(6.5)

A normalization by σf which is the variance of f over the entire image is necessary since

the values of f can be more-or-less spread out over the data.

As shown in Figure 6.8c, the resulting probability map exhibits strong contrast with

objects clearly distinguishable from the background. Moreover, nuclei and background

appear significantly more homogeneous than in the original image.

6.4.1.3 Incorporating geometrical information

A significant amount of intra-nuclear and background noise is still present in the proba-

bility map obtained with local features alone. In order to mitigate this issue, we propose

to compute a new map incorporating information about the geometry of the objects in

the image.

The geometrical information is derived from Connected Components (CC) obtained

by applying global thresholding to the initial map obtained in Section 6.4.1.2. CCs

are computed for a set of threshold values {tm = 0.5 + 0.05m|m ∈ J−5, 5K}. The

CCs for a given threshold value form a partition of the image, therefore, every pixel

from the original image is associated to 11 CCs it belongs to (one per threshold value).

Subsequently, 12 features are computed from each CC which results in a total of 132

geometrical features for each pixel.

The first 6 features associated to a CC are: the mean and variance of the pixel

intensity on the first probability map, the area, the perimeter, the roundness ρ (zeroth-

order regularity) and elasticity λ (first-order regularity) of the exterior boundary. ρ

and λ are computed following a method suggested in [32] using a representation of the

boundary as a 2π-periodic closed curve ~γ : R → R2 parametrized such as the speed
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(a) Original H&E image. (b) Binary mask from a manual delin-
eation of most nuclei.

(c) Probability map from local features. (d) Probability map from local and geo-
metrical features.

Figure 6.8: Examples of probability maps over a 256µm× 256µm frame.
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along the curve is constant:

∀s, ‖∂~γ
∂s

(s)‖ = c (6.6)

Subsequently,

θ(s) =
̂(

~u,
∂~γ

∂s
(s)

)
(6.7)

is defined as the angle between a fixed reference vector ~u and the tangent to the curve.

Then, the elasticity ε can be defined as:

λ(γ) =

∫ 2π

0

(
∂θ

∂s
(s)

)2

ds (6.8)

and the roundness ρ as:

ρ(γ) =

∫ 2π

0
|θ(s)− s| ds (6.9)

Note that θ(s) = s corresponds to a perfect circle. The remaining 6 features are the

same 6 features for the CC wrapping around this CC.

The 132 new geometrical features are added to the previous 120 local features from

Section 6.4.1.2 and a second probability map is computed following a similar procedure

(SVM classification and rescaling of the output). Figure 6.8d is the resulting probability

map after incorporation of the geometrical information. Compared to the first map

(Figure 6.8c), we can see that the background and intra nuclear noise levels are further

reduced and that the result is visually closer to the manual extraction on Figure 6.8b.

6.4.1.4 MPP with shape priors for nuclei extraction

The actual extraction of cell nuclei is performed from the probability maps incorporat-

ing geometrical information. Stochastic MPPs are a well known methodology for the

extraction of multiple objects from images. They were first applied for the extraction

of objects of simple geometrical shapes from remote sensing images [55] and were sub-

sequently extended to potentially arbitrarily-shaped objects [34]. A recent comparative

study [35] showed that applied to the extraction of nuclei from H&E stained biopsy

182



images, they offer better results than other existing state-of-the-art methods.

The method uses AC models incorporating shape priors to extract the objects from

the image. However, unlike the active contour based methods presented in section 6.3.2

which require a prior detection of the objects, the MPP framework constructs the ob-

jects using a methodology known as “high order AC” which does not require the location

or the number of objects to be known in advance. The optimal configuration of objects

in the image is obtained by sampling from the Gibbs probability distribution using a

Markov chain, which consists of a discrete-time multiple birth-and-death process fol-

lowing a logarithmic simulated annealing schedule to minimize the overall configuration

energy. The discrete process converges to a continuous-time process reaching a global

optimum as detailed in [14]. Full technical details on the method are available from [35].

The energy E(γ) associated to a nucleus boundary γ is a weighted sum of an image

term Ei(γ) and a shape term Es(γ). The latter is itself the weighted sum of a smoothing

term Esm(γ) and a shape prior term Esp(γ). The shape prior term:

Esp(γ) =
1

2π

∑
k∈Z

fk

∣∣∣∣∣
∫

[0,2π]
exp(−ikt)δr(t)dt

∣∣∣∣∣
2

(6.10)

allows or restricts the perturbations δr(t) of the boundary from a circle at a specific

frequency k by tuning the coefficient fk ≥ 0.

In particular, the shape prior information allows to properly extract overlapping

nuclei according to their expected shape without arbitrarily discarding the overlapping

parts as shown in Figure 6.9.

(a) (b) (c) (d)

Figure 6.9: Overlapping nuclei extracted using shape priors.
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6.4.2 Empirical study

6.4.2.1 Data

The data used for validation corresponds to slides from 5 breast cancer patients graded

by the pathologist following the Nottingham system and covering a wide range of his-

tological grades including the lowest (TF1-MC1-NP1) and the highest (TF3-MC3-NP3)

possible grades. The gradings were independently performed by 2 experienced patholo-

gists and found to be concordant.

From each slide, a 256µm×256µm frame at a resolution of 0.25µm/pixel was selected

in the tumoral region which typically corresponds to a region observed through an

optical microscope at a 40× magnification during grading. A total of 862 cell nuclei

were identified and manually delineated by the pathologist in the 5 frames.

The manual annotations are used both to create training sets for the SVMs and

evaluate the methods. It is important to note that although performed by an expert

pathologist, the manual delineation is inherently subjective due to the ambiguity of the

images and the relative imprecision of work done manually. In particular, some nuclei

are left out and the delineation must sometimes rely on guessing, specially when overlaps

are present. Therefore, the work should rather be considered as a bona fide annotation

effort from an expert pathologist rather than an unquestionable ground truth, which is

not possible to obtain.

The validation was performed using a leave-one-out scheme with each frame suc-

cessively used for validation and the remaining 4 used for training from which 100

intra-nuclear pixels and 100 background pixels are randomly selected to constitute the

training sets for the SVMs.

6.4.2.2 Evaluation metrics

The methods are first assessed for the detection of the nuclei and subsequently for the

accuracy of the extraction of the detected nuclei. From this point on, a nuclei extracted

by the method will be referred to as a “candidate” and a manually delineated nuclei as

a “reference”.

First, the best 1-to-1 mapping between the candidates and the references is found.

Here, the best mapping is defined as the one maximizing the total overlapping area
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between candidates and references. This assignment problem can be solved in O(n3)

using the “Hungarian” method [37] where n is the amount of objects. Let p be the

number of pairs established (i.e. the number of well-detected nuclei), r be the number

of reference nuclei and c be the number of candidates.

The quality of the detection is evaluated by measuring the precision and the recall

rate of the detection. The precision score, defined by prec = p
c , measures the proportion

of true positives among all the cells detected by the algorithm. The recall score defined

by rec = p
r measure the proportion of actual positives with are correctly recognized by

the algorithm.

The accuracy of the extraction is evaluated for every pair in the mapping with its

Jaccard index. For ever candidate-reference pair (Ai, Bi), the Jaccard index is defined

as: Ji = |Ai∩Bi|
|Ai∪Bi| . The score ranges from 0 (no overlapping) to 1 (perfect correspondence).

A global extraction score for the N pairs is computed by taking the arithmetic mean of

the individual Jaccard indices: acc = 1
N

∑N
i=1 Ji.

6.4.2.3 Results and discussion

In this section, we compare the detection and extraction performances of the MPP-based

algorithm applied to 3 different image modalities: the luminosity of the original H&E

image (as most of the existing methods presented in Sec. 6.3.2), the first map using

local information only and the second map incorporating the geometrical information.

The modality-dependent parameters of the method are tuned to reach a comparable

sensitivity on the different modalities.

n prec rec acc

luminosity 646 0.627 0.470 0.403

first map 623 0.828 0.599 0.690

second map 641 0.832 0.618 0.686

Table 6.1: Numerical results for the detection and extraction of nuclei. prec, rec and acc
are compared for an extraction using the luminosity of the original H&E image, the first
map using local features only and the second map incorporating the geometrical features.
n is the amount of candidate nuclei detected by the method.

Table 6.1 summarizes the numerical results for the detection and the extraction of

nuclei. Note that it is unrealistic to expect figures close to 100% due to the subjectivity

inherent to the manual annotations, as discussed in Sec. 6.4.2.1.
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First, we notice that the amount n of detected nuclei is relatively stable in the 623-646

range implying that the sensitivity of the MPP-based extraction method is calibrated

equivalently for the 3 modalities. The first probability map increases the precision rate

of the detection by more than 20 percentage points and the recall rate by nearly 12

points. The second probability map with additional geometrical information further

improves the precision by 0.4 points and the recall rate by 1.9 points. The accuracy of

the extraction is also greatly improved by the use of the probability maps (nearly 30

points).

Figure 6.10 provides a visual illustration of the improvements achieved by the use of

the new modality, with and without geometrical information, on a portion of high-grade

cancer frame.

In conclusion, by integrating a wide variety of information including color, texture,

scale and geometry into a unified framework, our method succeeds in greatly improving

the detection and extraction of nuclei from histopathological images. In particular, our

method produces a new, stable image modality which provides the robustness to deal

adequately with very irregular, high-grade cancers.

6.5 Grading of nuclear atypia

The grading of NAs consists in giving a numerical grade to individual high-magnification

frames according to the severity of the NAs observed on the cell nuclei. The numerical

grade corresponds to a judgement on the overall situation of the NAs and is attributed

by the pathologist without providing additional details.

Nevertheless, the concept of NA covers several specific aspects of the morphology of

the nuclei. The following is an attempt made under the supervision of expert pathologists

at formalizing the different aspects covered by the notion of NA.

Macrokaryosis – It designates the presence of nuclei larger than their normal size.

Nuclei from normal epithelial cells have a stable and small size, whereas cancerous

nuclei have an increased nuclear size. This is due to the fact that normal nuclei

have a fixed amount of chromosomes whereas cancerous nuclei may have more

chromosomes. As a practical rule of thumb used by the pathologists, non cancerous
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(a) From luminosity. (b) From luminosity, transposed to
H&E image.

(c) From first map. (d) From first map, transposed to
H&E image.

(e) From second map. (f) From second map, transposed to
H&E image.

Figure 6.10: Side-by-side examples of extracted nuclei in a small 57.75µm × 57.75µm
window showing high-grade cancer using the different modalities, and transposed back to
the original H&E image.
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nuclei are approximately 2.5 times larger than the nuclei from inflammatory cells.

Cells with nuclei more than 3 times this normal size can be considered exceptionally

large.

Nuclear pleomorphism – It designates the presence of differences between the sizes and

shapes of nuclei. Macrokaryosis does not occur evenly for all the nuclei in the

tumor. Therefore, malignant nuclei will usually show size and shape variations

within a same frame.

Homogeneity of the chromatin – Normal chromatin called “euchromatin” is homo-

geneous in appearance whereas pathological chromatin called “heterochromatin”

forms small clusters. Therefore, the heterogeneity of the chromatin is a sign of

malignancy.

Amount and size of nucleoli – Nucleoli are structures found within the nuclei of active

cells. Epithelial cells from a normal, non lactating breast have a low activity and

should seldom have any nucleoli. In contrast, cells from aggressively spreading

cancers have more numerous and larger nucleoli.

Thickness of the nuclear membrane – The presence of heterochromatin on the nuclear

membrane of cancerous cells causes it to become thicker.

According to the pathologists, macrokaryosis is the single most informative subtype

of NA. However, many BCG systems such as the Nottingham system put the focus

on the nuclear pleomorphism which is an indirect consequence of macrokaryosis. From

our understanding, this in not due to medical reasons but rather to the constraints

imposed by standard optical microscopes. Indeed, the precise size of objects is difficult

to evaluate on an optical microscope, whereas objects can easily be compared side-by-

side. This also explains why the stable size of inflammatory nuclei is used as a reference

by the pathologists.

6.5.1 Method

As detailed in Section 6.3.1.2, labeled medical data which can be used as training data

for the problem is hard to obtain. In particular, it is difficult to construct a full training

set covering the different possible cases of NA in an exhaustive fashion. Therefore, we
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choose to perform the actual grading using the ε-SVR together with the gRBF kernel

described in Section 4.5.

The feature model computed from the extracted nuclei is presented in Section 6.5.1.1

and the labeled knowledge sets are presented in Section 6.5.1.2.

6.5.1.1 Feature model

For each frame, a set of 21 features is computed from the nuclei extracted using the

method described in Section 6.4.

First, 5 values are computed for every individual nucleus including: its area α, the

roundness ρ and elasticity λ of the contour (see Section 6.4.1.3), and the mean hµ and

standard deviation hσ of the intensity of haematoxilin found inside. Then, the frame-

based features are computed by taking the mean, variance, minimum and maximum of

the above values. The total amount n of nuclei in the frame is also added, which makes

a total of 21 features for each frame.

The full set of features covers the different aspects of the definition of NA. The

concept of macrokaryosis is captured by the average and maximal values of α. Moreover,

the concept of nuclear pleomorphism is well represented by the standard deviation of α,

and by the features computed from ρ and λ. Finally, although we are unable to explicitly

detect the nucleoli or the nuclear membrane, the last 3 concepts have an impact in terms

of texture of the nuclei which is captured by the features computed from hµ and hσ.

6.5.1.2 Knowledge sets

A total of 3 labeled knowledge sets were constructed by interpreting the medical knowl-

edge previously formalized with the help of the pathologists. All of them can be rep-

resented as unbounded orthotopes which is important for computational reasons (see

Section 4.5.3.2).

On one hand, the definition of macrokaryosis implies that nuclei not exceeding 2.5

times the size of nuclei from inflammatory cells can be considered as normal. We deduce

from actual measurements performed on the virtual slides that this corresponds to an

area of 30µm2. Following this observation, we can construct the first labeled set (X1, vm)

where vm is the minimal score used by the pathologist on the grading scale and X1 is

the half-space for which the mean value of α is smaller than 30µm2.
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On the other hand, the definition also implies that nuclei larger than 3 times this

size are highly abnormal. We can construct the second labeled set (X2, vM ) where vM is

the maximal score used by the pathologist on the grading scale and X2 is the half-space

for which the mean value of α is greater than 90µm2.

Finally, cancerous tissue are characterized by a proliferation of cancerous cells.

Therefore, frames presenting a small amount on nuclei are usually not cancerous. This

leads to the definition of the last labeled set (X3, vm) where X3 is the half-space for

which the value of n is smaller than 5.

6.5.2 Empirical study

6.5.2.1 Data

The dataset contains 221 frames at a resolution of 1024× 1024 pixels covering an area

of 256µm×256µm. Each of the frame was given a grade from the pathologist on a scale

going from 0 (least severe) to 100 (most severe). A fine scale was chosen to avoid the

adverse effects from an artificial discretization. The most extreme values used by the

pathologist from the scale where vm = 40 and vM = 90.

In order to study the relevance of the precision of the scores, a subset of 30 images

were graded twice by the same pathologist in the same conditions. The pathologist

achieved a standard deviation of σ0 = 7.97 in terms of absolute difference of the scores.

Subsequently, differences between scores lower than σ0 can therefore be considered ir-

relevant. This figure will constitute our point of reference in order to appreciate the

quality of the results.

6.5.2.2 Results and discussion

Each numerical result presented in this section corresponds to the average absolute error

for 100 training-testing cycles. For each cycle, N sample frames where used for training

and the remaining N − 221 where used for testing. The ε-SVR with the gRBF kernel

were used. The learning parameters C and γ where tuned by grid search (best 5-folds

cross validation results). Flipping is applied for the entire dataset including the test data

(see Section 4.5.3.3). No active measure was taken to deal with the conflicts between

labeled data and knowledge sets, thus ρ = 0 (see Section 4.5.2.3).
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Figure 6.11 presents the results obtained with the gRBF kernel and the standard

RBF kernel for different values of N . The results show that the incorporation of prior-

knowledge improves the quality of results specially for small training sets (N < 20).

Unfortunately, the average error quickly reaches σ0 when N increases, which prevents

further comparison between the methods. Further comparisons would require annotated

frames with more stable gradings which are not available at this point in time.

For N ≈ 100, results are very close to the threshold σ0 = 7.97 which proves that it

is possible for the automatic grading of NA to perform as-well-as the pathologist.

RBF gRBF
N = 5 11.5887 10.5576
N = 10 10.3221 10.0268
N = 20 9.5590 9.5840
N = 30 9.1389 9.1810
N = 40 8.8525 8.7820
N = 50 8.5950 8.5274
N = 70 8.2921 8.3140
N = 100 7.9647 7.9373

(a) Numerical results
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Figure 6.11: Average error rates over 100 random iterations. The blue line corresponds
to the gRBF kernel and the red line to the RBF kernel. The threshold value σ0 is indicated
by the black line.

6.6 Exploration of very large images

The grade corresponding to the entire slide should be computed from the most malignant

frames. Although the grading of NA is possible for a single high-magnification frame

using the method presented in Section 6.5, a single biopsy virtual slide is a Very Large
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Image (VLI) commonly comprising several thousands of high magnification frames, mak-

ing an exhaustive analysis of all of them not feasible (see Section 6.3.1.3). Therefore, a

method able to efficiently find the highest grading regions of the slide is necessary.

In this section, we propose an efficient, generic strategy to explore large images. Our

system combines a specific measure of local relevance together with a generic dynamic

sampling method based on computational geometry. Applied to our BCG problem, it is

able to provide both an accurate and time efficient solution for the grading of full biopsy

slides.

The generic algorithm is described in Section 6.6.1. Then, we propose an empirical

comparison of random sampling versus our guided sampling algorithm in Section 6.6.2.

6.6.1 Method

Let I be a VLI split into a large number of square frames x ∈ I. For every frame x,

a specific measure of local relevance S(x) referred to as “score” can be computed. The

goal of our algorithm (referred as EX-grad) is to efficiently locate the frames in I having

the largest relevance score S(x). In our application, the local score is the frame-based

NA grade.

The steps of this VLI exploration method are the following. First, a dynamic sam-

pling method is used to identify a subset of the most relevant frames (with high S(x)).

The objective is to save computational effort by progressively discarding regions show-

ing uniformly low scores and focus the analysis around high-scoring regions. Then, the

scores from the sampled subsets are used to interpolate a local score for each of the re-

maining frames in the VLI. Finally, the highest scoring areas can be precisely identified

and extracted from the map of the interpolated score values.

6.6.1.1 Local assessment

Ideally, the local relevance score S(x) should be a semantic information specific to

the context of the application such as the local NA grade SNA(x) in our application.

Alternatively, when such an information is not available, it can be a low-level feature

characterizing the amount of information available such as the compression rate SCR of

the image. Maps obtained with the two different score functions on the same biopsy

slide are shown on Figure 6.12. The high level of similarity between the two maps
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(a) SCP map (b) SNA map

Figure 6.12: Maps of (a) the low-level SCR score and (b) the high-level SNA score for the
same biopsy slide.

indicates that the low-level SCR can be used as an alternative to SNA when such high-

level information is not available.

6.6.1.2 Dynamic sampling

The frame sampling procedure is a dynamic and incremental scheme based on compu-

tational geometry tools. At each iteration, given E the set of frames already sampled in

the VLI I, we construct the Voronoi diagram of the centroids of the frames in E denoted

as VorE . VorE is a collection of Voronoi cells {νx|x ∈ E}, defined as:

νx = {p ∈ I|∀y ∈ I − {x}, dist(p, x) ≤ dist(p, y)} (6.11)

The set of Voronoi vertices, referred to as VE , is the set of the vertices of the planar graph

representation of VorE . Voronoi vertices share the propriety to be locally the farthest

position from their nearest neighbor in E, therefore from already sampled frames.

This geometric construction is aimed at approximating the score S within a whole

Voronoi cell by the score of the frame at its center which results in a nearest neighbor

approximation. Accordingly, the most undetermined areas are at the intersection of

multiple cells, i.e. frames containing a vertex from VE . We select our next sample x out

of VE following two criteria:

1. At least one of its neighboring cells has a high score. Practically, we check that

the score MaxScore(x) of its highest scoring neighbor in E is higher that p×maxE

where maxE is the currently observed maximal score among E and p ∈ [0, 1] is a
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preset parameter defining the selectivity of the algorithm. This condition controls

the convergence of the algorithm towards areas with high scores.

2. The distance between the new sample and its neighbors is not too short. In practice,

we want dist(x,E) ≥ d where d ∈ [0,∞[ is a parameter determining the fineness

of sampling. This condition prevents oversampling.

The pseudo-code for one iteration of the sampling algorithm is given in Algorithm 1.

To avoid re-computing entire Voronoi diagrams at the addition of every new sample,

the new Voronoi diagram is obtained by updating the previous one. Ohya et al. [53] have

proposed an algorithm for incremental Voronoi diagram construction with an average

time-complexity of O(n) where n is the amount of generators. Sugihara and Iri [78] have

later proposed a numerically robust version of it. In the case of the NA grade SNA, it

ensures that the cost of selecting all the necessary samples remains negligible compared

to the cost of grading a frame. The sampling phase is initialized with three arbitrarily

selected frames. Choosing centroids of connected components based on low resolution

gray scale analysis has proved to work fast and well. The iterative sampling algorithm

is run until depletion of candidate samples. In practice, the parameters d and p are

adapted during the whole process by successively taking lower values of d and higher

values of p every time samples are depleted. The rationale behind this is to adapt the

density of sampling to the score of the regions: regions with homogeneously low scores are
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assumed to be less interesting and therefore to require less exploration than regions with

higher or more heterogeneously distributed scores. Figure 6.13 illustrates the evolution

of sampling over a biopsy slide. It shows that the algorithm is indiscriminate at first

and becomes progressively more selective towards regions with high scores.

(a) After 50 samples: the whole VLI is be-
ing explored. No area seems favored.

(b) After 150 samples: the algorithm con-
verges towards a high grade area.

(c) After 400 samples: the sampling is very
dense around this area and remains sparse
in others.

(d) The highest grading area superimposed
over a low magnification image of the VLI

Figure 6.13: Dynamic sampling method applied to a histopathological VLI of size 59, 000×
44, 000 pixels. The SNA score has been used. The incrementally constructed Voronoi
diagrams are shown in black. Each cell contains a single sample at its center. The maps
resulting from the interpolation are shown in colors. Hot colors represent higher grades.

6.6.1.3 Map interpolation

Finally, a full map of the scores over the whole VLI I is interpolated from the scores of

the sampled frames. The map is expected to describe accurately the regions with a high

local relevance score. In this study, two different interpolation paradigms have been

considered to produce the global map from the samples: a nearest neighbors framework

where all the frames contained in a Voronoi cell have the same score, and a model based

on spring mechanics where every frame is linked to its four neighbors by virtual springs
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of length zero and equal stiffness. The map show in color on Figure 6.13 correspond to

the spring-based interpolation method.

6.6.2 Experiments and discussion

The method is evaluated for the grading of NA as our local relevance score. The test

set consists of 4 H&E stained biopsy slides containing a total of 20, 696 frames graded

with the method presented in Section 6.5. The typical size of a VLI is approximately

50, 000× 50, 000 pixels.

Performances are measured for the retrieval of the set Relf of frames having a score

of at least 0.8 ×max where max is the global maximum score in the slide. Retf refers

to the set of frames retrieved by EX-grad for having an interpolated score of at least

0.8 × max. The precision, recall and F-measure (harmonic mean) of the retrieval are

defined as:

prec =
|Retf ∩Relf |
|Retf |

rec =
|Retf ∩Relf |
|Relf |

F = 2× prec× rec
prec+ rec

(6.12)

Results are compared to random uniform sampling of the same amount of frames

followed by similar interpolation methods. Figures for random sampling are average

values over 100 trials. Comprehensive empirical results corresponding to the 4 cases of

breast cancer can be found in Table 6.2.

case
no.

no.
of
frames

no. of
samples

EX-grad Random sampling
Nearest neighbor approx. Spring based approx. Nearest neighbor approx. Spring based approx.
prec. rec. F-meas. prec. rec. F-meas. prec. rec. F-meas. prec. rec. F-meas.

case 1 3648 159 (4%) 1.000 0.650 0.788 1.000 0.650 0.788 0.104 0.148 0.122 0.548 0.040 0.075
case 2 5880 102 (2%) 1.000 0.800 0.889 1.000 0.800 0.889 0.007 0.082 0.013 0.120 0.024 0.040
case 3 2544 527 (21%) 1.000 0.286 0.444 1.000 0.286 0.444 0.216 0.209 0.212 0.740 0.196 0.310
case 4 8624 164 (2%) 1.000 0.318 0.482 1.000 0.318 0.482 0.045 0.076 0.057 0.540 0.019 0.036

Table 6.2: Experimental results for the dynamic sampling of frames.

As shown on Figure 6.14, the nearest neighbor method tends to have a better recall

rate whereas the spring based method has much higher precision. Both interpolation

methods eventually converge towards the same results. F-measures are roughly similar

at any sampling rate. Nevertheless, given that the recall rate remains at acceptable

levels, it is advisable to opt for the more sophisticated spring based approximation since

perfect precision is more critical for an accurate diagnosis than better recall.

All results show the excellent overall performances of our algorithm. Our method
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has always achieved absolute precision, with as little as 2% of the frames analyzed in half

of the cases. Recall rates span from 32% to 80% with an average value above 50% which

allows the retrieval of enough high NA frames to grade the slide. The effectiveness of the

dynamic sampling algorithm has been proved by the dramatically lower performances at

similar sampling levels with random sampling (followed by any interpolation method).

In conclusion, our method has proved its ability to accurately find and measure the

highest levels of NA in a biopsy slide within an acceptable time frame as well as to

provide a useful, reliable visualization map for the end-user.
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Figure 6.14: Detailed results for case 1 showing differences between the two interpolation
methods at lower levels of sampling.
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Chapter 7

Conclusion

In this thesis, we proposed the KE-RBF kernel framework, a set of kernel methods for

the incorporation of various types of problem-specific prior-knowledge into SVMs.

First, we gave a statistical introduction to SVMs emphasizing on the importance of

kernels in Chapter 2. Then, we put up a structured and critical review of the state-of-

the-art on the incorporation of prior-knowledge into SVMs in Chapter 3 and proposed

the KE-RBF framework, our original contribution to the problem based on 3 families of

kernels (ξRBF, pRBF and gRBF) in Chapter 4. A thorough empirical validation of the

framework basing on a wide variety of fields of application was proposed in Chapter 5.

Finally, we proposed a valorization of our work in a computer-aided BCG application

done in close collaboration with pathologists from the MICO project and scheduled for

real clinical deployment in Chapter 6.

7.1 Summary of the contributions

The various contributions of this thesis can be summarized in the following fashion.

First, SVMs where introduced in a didactic tutorial as an implementation of a sound

statistical risk minimization strategy known as the structural risk minimization prin-

ciple. In particular, we justified the importance of using kernels inducing an adequate

hypothesis space for the resolution of the problem.

Then, we showed that the KE-RBF framework proposed in this thesis provides prac-
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tical and effective tools for the incorporation of a variety of commonly available prior-

knowledge into SVMs.

Their systematic evaluation on five different applications using publicly available

real-world data (and synthetic data in a lesser extent) from very diversified fields of

application showed that KE-RBF kernels are effective and easy to use in practice. We

showed that they can lead to significant performance improvements when used with

adequate prior-knowledge, and are able to overperform the standard RBF kernel with

training sets up to ten times smaller in some cases.

The improvements were particularly pronounced with very small or strongly bi-

ased training sets. This remarkable reduction in training data requirements enabled by

the KE-RBF kernels, both quantitatively and qualitatively, opens new perspectives for

SVMs significantly broadening their usual field of application.

Finally, we proposed a valorization of our contribution through an application to

BCG able to satisfy the actual operational requirements of the pathologists. This ap-

plication demonstrates how the KE-RBF framework can work as one of the numerous

components or a complex, real-life engineering project an proves the operational readi-

ness of the framework.

7.2 Future works

Future developments to the work carried out in this thesis can be considered from several

perspectives: theoretical, computational and applicational.

In this thesis, we showed that the KE-RBF framework is able to incorporate a wide

variety of prior-knowledge into SVMs. However, the different types of prior-knowledge

where considered successively and independently from each other. The question of

how heterogeneous types of prior-knowledge could be concurrently considered was not

answered in the scope of this work.

By itself, the ξRBF kernel is able to deal with different types of prior-knowledge

and one should be able to compose them by multiplication of the corresponding knowl-

edge functions (in a fashion similar to the way multiple frequencies were composed in
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Sect 4.3.2.2). Technically, the pRBF kernel (Krbf⊗K) and the ξRBF kernel (ξKrbf) can

also be used simultaneously (ξ(Krbf⊗K)) but there is no theoretical guarantee that the

originally good properties of the pRBF kernel (preservation of the correlation patterns)

or the ξRBF kernel (appropriate modification the kernel distance) will be preserved.

The case of the gRBF kernel which extends the domain of the data seems even more

complex to deal with.

Accordingly, an interesting theoretical development to the work would be to study

the simultaneous incorporation of heterogeneous types of prior-knowledge in a system-

atic fashion. Overall, it appears that the KE-RBF framework would benefit from a

unification effort.

In this thesis, the prior-knowledge was considered as a complement for or as an

alternative to annotated training data, in order to improve the overall quality of the

results. Another theoretical extension to the work would be to use the prior-knowledge

for a different purpose, in a validation role.

Indeed, a number of critical systems are not aiming for the best possible average

performances, but rather for the prevention of failures. For instance, the pathologist

engages his legal responsibility when he performs a diagnostic. Therefore, it is impossible

for him to blindly trust an automatic system such as our BCG platform no matter how

good are the results on average if there are no guarantees on the result.

Usually, statistical learning from data does not provide such guarantees. Therefore,

an interesting problem would be related to the use of the prior-knowledge in order to

enforce properties on the labeling model, in a similar fashion to what was done with

theorem 4.4.6.

This thesis was mainly focused on the theoretical validity of the methods and their

empirical performance evaluation. In comparison, computational issues such as online,

incremental learning with KE-RBF kernels were not considered in the scope of this

work. As a matter of fact, an online version for another optimization-based method

for the incorporation of prior-knowledge into SVMs, known as the KBSVM, was re-

cently proposed by Kunapuli et al. [36]. Therefore, more work could be conducted on

aspects which do not directly relate to the validity of the methods but rather to their

computational efficiency.
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The application to BCG developed during this thesis in the context of the MICO1

project has a planned extension with the FlexMIm project starting from September 2012

and funded for a 3 years term by the Fond Unitaire Interministériel (France). It has

a structure comparable to the MICO project involving academic partners2,3, industrial

partners4,5 and pathologists6. FlexMIm is an assistive framework for histopathology

and cytopathology with a focus on collaborative issues such as the sharing of data,

knowledge and technical tools between different medical specialities and locations.

Unlike the MICO project, the platform addresses the different fields for histopathol-

ogy not restricted to the study of breast cancer. This introduces new interesting ques-

tions such as domain adaptation for problems with training data and prior-knowledge.

FlexMIm is also scheduled for a larger scale deployment in 27 medical units and has a

much stronger emphasis on operational issues. Therefore, knowledge modeling by end-

users (medical doctors) who do not have specialized knowledge in the machine learning

field becomes and central issue.

1http://ipal.i2r.a-star.edu.sg/project/mico
2Université Pierre et Marie Curie, Paris, France
3Université Paris Descartes, Paris, France
4Orange, France
5TRIBVN, France
6Assistance Publique – Hôpitaux de Paris, France
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Appendix A

Further developments on PD

kernels and their RKHS

In theorem 2.2.20, we proved that a PD kernel is a reproducing kernel. The reciprocal

of theorem 2.2.20 is also true:

Theorem A.0.1. A reproducing kernel is a PD kernel

Let K : X 2 → R be a reproducing kernel. Then, K is a PD kernel.

Proof. In accordance with definition 2.2.1, we must prove that K is symmetric and

positive definite.

K is symmetric because for any (x, y) ∈ X 2:

K(x, y) = 〈Kx,Ky〉H by the reproducing property of K

= 〈Ky,Kx〉H by symmetry of the inner product

= K(y, x) by the reproducing property of K

K is positive definite because for N ∈ N, (x1, x2, . . . , xN ) ∈ XN , (v1, v2, . . . , vN ) ∈
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RN :

N∑
i=1

N∑
j=1

vivjK(xi, xj) =
N∑
i=1

N∑
j=1

vivj〈Kxi ,Kxj 〉H by the reproducing property of K

= 〈
N∑
i=1

viKxi ,
N∑
j=1

vjKxj 〉H by bilinearity of the inner product

= ‖
N∑
i=1

viKxi‖2H

≥ 0

PD kernels and reproducing kernels are therefore two different ways of characterizing

the same objects.

Theorem A.0.2. Characterization of reproducing kernels

Let K : X 2 → R. The two following properties are equivalent:

1. K is a PD kernel

2. K is a reproducing kernel

Proof. Direct consequence of theorems 2.2.20 and A.0.1.

Remark A.0.3. RKHS also have a simple characterization: a vector subspace H of RX

is a RKHS if and only if the function evaluating of a function f ∈ H to a point x ∈ X

is continuous of every x.

So far, we have always been referring to “a” RKHS associated to a reproducing

kernel. In fact, every reproducing kernel defines a unique RKHS.

Theorem A.0.4. RKHS of a reproducing kernel: uniqueness

A function K : X 2 → R is the reproducing kernel of at most one RKHS.

Proof. Lets assume (H, 〈., .〉H) is a RKHS associated to the reproducing kernel K. The

proof is done in two phases:

1. The unicity of H

2. The unicity of 〈., .〉H
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By definition, H contains HK = spanR{Kx}x∈X . The goal is to prove that H = HK .

H is a Hilbert space. Therefore for any subset A ⊂ H, H = A ⊕ A⊥ where ⊕

represents the direct sum and ⊥ designates the set of elements orthogonal to a set. In

particular, since HK ⊂ H, then H = HK ⊕H⊥K .

Now, we prove that H⊥K = {0}. Let f ∈ H⊥K . For any x ∈ X , the reproducing

property gives us:

f(x) = 〈f,Kx〉H

= 0 since Kx ⊥ f

Thus, ∀x ∈ X , f(x) = 0 i.e. f = 0.

Therefore, we get the uniqueness of H:

H = HK ⊕H⊥K

= HK ⊕ {0}

= HK

We now prove the uniqueness of the inner product. For any two element of HK :

〈
N∑
i=1

αiKxi ,

M∑
j=1

βjKyj 〉H

=
N∑
i=1

M∑
j=1

αiβj〈Kxi ,Kyj 〉H by bilinearity of the inner product

=

N∑
i=1

M∑
j=1

αiβjKxi(yj) by the reproducing property of K

=
N∑
i=1

M∑
j=1

αiβjK(xi, yj)

which uniquely defines the inner product.

Based on theorems A.0.2 and A.0.4, it is therefore legitimate to refer to “the” RHKS

of a PD/reproducing kernel.

Remark A.0.5. The contrary of theorem A.0.4 is also true: a given RKHS admits a

single PD/reproducing kernel.
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In addition, the proof of theorem A.0.4 yields an explicit form for the RKHS, similar

to the one introduced in theorem 2.2.20.

Theorem A.0.6. RKHS of a reproducing kernel: explicit form

The unique RKHS associated to a reproducing kernel K is the Hilbert space (HK , 〈., .〉HK )

such that:

• HK is the real vector space generated (spanned) by the functions {Kx|x ∈ X}.

• 〈
∑N

i=1 αiKxi ,
∑M

j=1 βjKyj 〉HK =
∑N

i=1

∑M
j=1 αiβjK(xi, yj)

Proof. Corollary of the proof of theorem A.0.4.
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Appendix B

Geometrical construction of the

SVC

This appendix provides a sketchy outlook on how an equivalent formulation for the SVC

can be obtained from geometrical considerations alone.

Remark B.0.7. The naming of notions such as the “margin” or the “slack” variables

come from this geometrical interpretation of the SVCs.

Hard-margin SVC The particular case of (2.57) with the linear kernel and without

slack variables (∀i, ξi = 0) referred to as the hard-margin SVC is often presented as the

most basic type of SVC.

The optimization problem corresponding to the hard-margin SVC is:

minimize
w∈Rn, b∈R

‖w‖2

subject to yi(〈w, xi〉+ b) ≥ 1, i = 1, . . . , N

(B.1)

The problem is equivalent to finding a hyperplane (perpendicular to w) separating

points from each of the classes such as the distance 1
‖w‖2 between the hyperplane and

the nearest sample point is maximized.

Problem (B.1) is therefore equivalent to maximizing the width 2
‖w‖2 of a “margin”

around the decision surface which is clear of any training sample.
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Soft-margin SVC The main issue of the hard-margin version is that it requires the

classes to be linearly separable in order to admit a solution. The introduction of “slack”

into the problem through the use of the slack variables ξi ensures that the problem is

always solvable.

This version of the hard-margin SVC with relaxed constraints is known as the soft-

margin SVC. Its primal formulation is:

minimize
w∈Rn, b∈R

N∑
i=1

ξi + λ‖w‖2

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(B.2)

The tolerance to misclassification is controlled by adjusting the parameter λ > 0, a

high value of λ allowing for more slack.

Nonlinear case Finally, the nonlinear formulation (2.57) directly obtained by deriva-

tion from the SRM principle can be presented as an extension of the soft-margin linear

SVC to nonlinear classification using the kernel trick.
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