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ABSTRACT

Recently, digital pathology (DP) has been largely improved due to the development of computer vision and
machine learning. Automated detection of high-grade prostate carcinoma (HG-PCa) is an impactful medical
use-case showing the paradigm of collaboration between DP and computer science: given a field of view (FOV)
from a whole slide image (WSI), the computer-aided system is able to determine the grade by classifying the
FOV. Various approaches have been reported based on this approach. However, there are two reasons supporting
us to conduct this work: first, there is still room for improvement in terms of detection accuracy of HG-PCa;
second, a clinical practice is more complex than the operation of simple image classification. FOV ranking is
also an essential step. E.g., in clinical practice, a pathologist usually evaluates a case based on a few FOVs from
the given WSI. Then, makes decision based on the most severe FOV. This important ranking scenario is not
yet being well discussed. In this work, we introduce an automated detection and ranking system for PCa based
on Gleason pattern discrimination. Our experiments suggested that the proposed system is able to perform
high-accuracy detection (∼ 95.57% ± 2.1%) and excellent performance of ranking. Hence, the proposed system
has a great potential to support the daily tasks in the medical routine of clinical pathology.

1. INTRODUCTION

Digital pathology has been benefiting from the technologies of computer vision and machine learning. Integrating
pathology informatics into clinical practices is important in the future of pathology. In a consistent series of
cancers, accurate cancer diagnosis is based on the fine needle biopsy. Often, due to inter- and intra- observer
variability, even with experienced pathologists, agreement in prostate cancer Gleason grading could be as low
as 70%.1 As a result, a reliable and consistent computer-aided diagnosis (CAD) method for interpretation of
prostate hisopathology can become an essential tool in clinical practice. As long as proper training patterns
are provided, the CAD method can generate critical information for rapid routine clinical reporting. Further, a
range of research applications, medical training and clinical studies also can be positively impacted.

Since the capabilities of computation and data storage have been boosted, many cutting-edge technologies of
CAD methods were recently proposed. Most of them are based on haematoxylin and eosin (H&E) stained whole
slide images (WSIs), e.g., the method proposed by Weingant et al. in 2015.2 They suggested high- and low-
grade prostate cancer (HG-PCa & LG-PCa) classification based on H&E WSIs via stain normalization and cell
density estimation. As they have reported, based on their own private image set, the performance in the form of
AUC [the area under the receiver operating characteristic (ROC) curve], is about 0.703− 0.705; DiFranco et al.3
proposed a whole-slide prostate cancer probability map using color texture features; Huang et al. mentioned a
combination of support vector machines (SVMs) and texture fractal analysis. The accuracy of tumor prediction
on their own private image set can be as good as 93.7%± 3.3%.4

Most of the existing algorithms are focusing on discriminating high-grade H&E image patterns from the given
input images. Many of them achieved 90% in terms of accuracy, especially, when involving their own private
image sets. However, a clinical practice is more complicate than an operation of image classification. That is,
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in the clinical practice, a pathologist selects a few regions of interest (ROIs), named fields of view (FOVs) and
evaluate them in high-magnification (e.g., 10× as suggested in Gleason grading protocol) and the final decision
will be made based on the most severe FOVs.5 In other words, the pathologist ranks the chosen FOVs.

It is interesting to see the rank of each ROI on the given WSIs, e.g., a Google-like search engine of ROIs,
which is able to give the ranks of high-grade images. Fortunately, it is possible to realize such kind of system
by combining a series of learners, e.g., ranking boosting (RankBoost).6 Based on this concept, we propose a
detection and ranking method which aims to mimic the practical scenario of pathological diagnosis.

The proposed method combines 3 major components, including: 1) H&E image sampling based on nuclei
density method, 2) H&E image feature extraction and 3) HG-PCa/LG-PCa ranking algorithm. The nuclei
density based H&E image sampling method is a strategy of image sampling on WSIs. The sampling method
identifies high nuclei density regions, as the high nuclei density regions are more relevant to cancerous areas due
to the nature of cancer. The H&E image feature extraction converts a H&E image patch into a numerical feature
vector which is considered as the feature descriptor (FD) for the H&E image patch. HG-PCa/LG-PCa ranking
algorithm is a method that can rank a set of given image patches based on their FDs, e.g., a set of ROIs. The
ranking algorithm is able to assign the order of ranks for all given ROIs. Hence, a pathologist can evaluate the
locations of these ROIs accordingly.

Instead of using private image sets, we used a public dataset provided by The Cancer Genome Atlas (TCGA)
due to the availability of large amount of cancerous cases. TCGA is a comprehensive and coordinated effort to
accelerate our understanding of the cancer through the application of medical/biomedical data analysis tech-
nologies, including large-scale genomes sequencing, medical reports and WSI analyzing. In the experiments, we
used the WSIs of prostate adenocarcinoma cases in TCGA and their medical reports as the training patterns.

In this paper, Section 2 introduces the proposed method, including the proposed approach using nuclei density
based H&E image sampling method, H&E image feature extraction and HG-PCa/LG-PCa ranking algorithm.
Their performances are discussed in Section 3, including the presentation of the dataset used in this study.
Finally, in Section 4, we conclude our study by detailing some possible future research directions.

2. METHODS
2.1 Hematoxylin & Eosin (H&E) Image Sampling based on Nuclei Density
Almost all computer vision applications are facing on a challenge called the curse of dimensionality, since a image
usually contains more than 103 to 106 pixels. In the case of whole slide images, the situation is even worse: the
number of pixels can easily exceed 109. As a result, analyzing such kinds of images directly is often practically
infeasible.

This is where the concept of image local patch sampling becomes useful. Instead of analyzing a global image,
we prefer to look into a set of smaller local patches cropped from the global image, since the local patches are
often experiencing less distortion than the global image. As a result, it is easier to define the similarity between
two sets of local patches. In the last decade, this idea has been widely investigated.7,8

Due to the “curse of dimensionality”, analyzing full-size images directly is often practically infeasible. Local
image patch sampling methods thus become a famous topic in the field of image processing.9

Tile-based local image patch sampling and random local image patch sampling are two well-known methods
for sampling local image patches. Tile-based local image patch sampling is often used in the field of image
compression, as the data redundancy is minimized. However, for the fields of object recognition, this is not
necessary to be a good idea, since a targeting object is not always aligned on the grid of tile-based sampling.
Random local image patch sampling is often used when there is no specific targeting object, e.g., texture analysis.
However, it can generate a certain amount of redundant data.9

Another method for sampling local image patches is content-based local image patch sampling, which is more
suitable for our needs since the certain pathological information can be used. The proposed method is not based
on tile-based image method. Instead, it uses pathological information provided by the image itself. First, we
perform stain deconvolution in order to obtain the staining intensity of hematoxylin. Hematoxylin colors nuclei
of cells (as well as other objects, such as keratohyalin granules and calcified material) blue. In most of cases,



Algorithm 1 Nuclei Density based Image Sampling
1: procedure
2: Input :
3: Input image: I = {[I]x,y|[I]x,y = (r, g, b), 1 ≤ x ≤ M, 1 ≤ y ≤ N}, where M is image width, N is height

and (r, g, b) represents a point in the color space of red, green and blue.
4: S: 1

2 of image width (and height).
5: Initial :
6: J = nuclei_detection(I), where

J = {[J ]x,y|[J ]x,y ∈ {1, 0}, 1 ≤ x ≤M, 1 ≤ y ≤ N}, and

[J ]x,y =

{
1, if (x, y) belongs to a nucleus,
0, otherwise.

7: Begin:
8: for t = 1 to T do
9: K = kernel_density_estimation(J), where K is the probability density function of J , K =
{[K]x,y|[K]x,y ∈ R≥0, 1 ≤ x ≤ N, 1 ≤ y ≤M}.

10: Remove padding of K (for preventing sampling beyond image boundaries): [K]x,y ← 0, if x ≤
S or x ≥ (M − S) or y ≤ S or y ≥ (N − S).

11: Find the global maximum point of [K]x,y: (x′t, y′t) = argmax(x,y)([K]x,y).
12: Break the for-loop from here if necessary, e.g., (x′t, y′t) = (x′t−1, y

′
t−1).

13: Fetch an image: Pt ← {[I]x,y|(x′t − S) ≤ x ≤ (x′t + S), (y′t − S) ≤ y ≤ (y′t + S)}.
14: Remove the neighboring nuclei location points: [J ]x,y ← 0, if (x′t − S) ≤ x ≤ (x′t + S) and (y′t − S) ≤

y ≤ (y′t + S).
15: end for
16: Output : image list [P1, · · · ].
17: end procedure

pathologists are more interested on the locations which contain more number of nuclei. As a result, sampling
images from these locations is more meaningful for a CAD system. Many methods are ready for doing this as
Veta et al. mentioned.10The scenario of the nuclei density based H&E image sampling method is: first, for the
given WSI, we use an existing method to detect the nuclei location points. Fortunately, many methods are ready
for doing this as Veta et al. mentioned.10

Next, we use kernel density estimation (KDE) to estimate the nuclei density map on the given WSI. We can
identify the location of the global maximum point on the nuclei density map. The location is used to define a
region for sampling an image. Then, we remove the neighboring nuclei location points of the global maximum
point. This procedure is repeated until all stopping criteria are satisfied, e.g., the number of images is satisfied.
For the further details, please refer to the algorithm shown in Alg. 1.

2.2 Hematoxylin & Eosin (H&E) Image Feature Extraction
The feature extraction method for H&E images includes two steps: stain deconvolution and feature description.
The purpose of stain deconvolution is to extend the data dimensions in color space as there are significant
benefits for the feature extraction.11 Other than the original red, green and blue channels, the channels such as
luminance, haematoxylin staining and eosin staining can also be used. There are many efficient methods can be
considered for stain deconvolution, e.g., Macenko’s method.11

The next step is to define the feature descriptor (FD) for each given image. FD should be correlated with
essential indicators, such as Gleason patterns. In this sense, various methods have been proposed in the last
decade, e.g., Gabor Filtering,12 Features of Fractal Dimension by Differential Box-Counting (DBC)4

• Gabor Filtering:
Gabor filtering bank set is a set of linear filters used for texture detection. They have been found to be
particularly appropriate for texture representation and discrimination.12



Algorithm 2 HG-PCa/LG-PCa Ranking Algorithm
1: procedure
2: Input :
3: Training patterns: X = {(xi, li)|1 ≤ i ≤ n,xi ∈ RM×N , li ∈ {0, 1}}.
4: Pattern weights: w1,1, · · · , wn,n ∈ R≥0.
5: Features: d1,(·), · · · , dm(·), each di(·) ∈ RDi .
6: Weak learners: h1(·), · · · , hp(·) ∈ {1, 0}.
7: Initial :
8: Each wq,r,1 = 1/n2.
9: Weak learner pool: H = {h1(d1(·)), · · · , hp(dm(·))}.
10: Begin:
11: for t = 1 to T do
12: Divide training patterns into K parts: X = {X1, · · · , XK}.
13: for k = 1 to K do K-fold cross validation
14: Train hi(dj(xq)) and hi(dj(xr)),∀i, j and each xq and xr /∈ Xk

15: Compute ei,j,k =
∑

q,r wq,r,t(hi(dj(xq))− hi(dj(xr)))∀i, j and each of xq and xr ∈ Xk.
16: end for
17: Ei,j =

∑K
k=1 ei,j,k,∀i, j, i′t, j

′
t = argmaxi,j Ei,j and αt =

1
2 log

1+Ei′t,j
′
t

1−Ei′t,j
′
t

.

18: Update wq,r,t+1 ← 1
Zt
wq,r,t exp (αt(hi′t(dj′t(xq))− hi′t(dj′t(xr)))), where Zt is a normalizer for all

wq,r,t+1 such that all wq,r,t+1 will be a distribution.
19: Remove hi′t(dj′t(·)) from H
20: end for
21: Output : s(v) =

∑T
t=1 αthi′t(dj′t(v)) for input v.

22: The larger output of s(v), the higher rank.
23: The sign of s(v) is the classification result of v.
24: end procedure

• Features of Fractal Dimension by Differential Box-Counting (DBC):
DBC has been widely used in the fields of image classification since Sarkar et al. first introduced it and
then Huang et al.4 proposed an automatic classification for H&E prostate cancer images.

• Entropy-based Fractal Dimension Estimation (EBFDE):
EBFDE is an alternative method for computing fractal dimension based on entropy. This has first been
proposed by Huang et al.4

There are also some other feature extraction methods,3,4 e.g., multi-wavelet methods, histogram statistics
methods, and gray-level co-occurrence based methods, etc. Although they have not been implemented in our
system. However, for the sake of expanding the diversity of weak learners, it will be important to include more
feature description methods in the future.

2.3 High Grade / Low Grate Prostate Cancer (HG-/LG-PCa) Ranking Algorithm
The proposed ranking algorithm is an enhanced version of the RankBoost proposed by Freund et al.6 The
RankBoost method is an ensemble method which uses multiple learning algorithms (called weak learners) to
obtain a better performance of the final strong ranker. The more diverse weak learners, the better performance
of the final strong ranker. A weak learner includes a feature descriptor and a binary classifier. The binary
classifier is trained to fit the preference of the input data. In our case, HG-PCa is more preferable than LG-PCa.

The pool of weak learners is composed by the combination of the FD mentioned in the previous section
and various types of existing classifiers, including: k-nearest neighbors, support vector classifiers, decision trees,
adaptive boosting, Gaussian Naïve Bayes, linear discriminant analysis, quadratic discriminant analysis, as well
as these classifiers with different parameters.



Input Image Nuclei Detection Nuclei Density Image Patches

Figure 1. The procedure of nuclei density based H&E image sampling algorithm: the 1st column is an input image. The
2nd column is the nuclei detection representing in blue dots. The 3rd column is the nuclei density map using KDE (see
text), in which, darker areas represent higher nuclei density areas and vice versa. The surrounding low density area is
the result of removing the padding area of the density map in order to prevent sampling beyond the image boundaries.
On the density map, a range of image sampling area (shown as a red rectangle) is selected around the global maximum
point (shown as a red star). The 4th column is the image patch cropped from the image sampling area. After each step
of image sampling, the neighboring nuclei location points are removed. Then the procedure is repeated until all stopping
criteria are satisfied.

In the training phase, during each step of iteration, a weak learner is selected with a weight based on its
performance. Over a certain number of iterations, a group of weak learners and their weights are determined.
In the testing phase, given a testing pattern, the summation of the output of these weak learners (with the
corresponding weights) will be able to give an output for ranking. The actual value of the output is not
important. Instead, we are more interested in the comparison between the output values of two testing patterns.
In other words, given a set of testing patterns, one can find the order of them by sorting their output values
from the strong ranker. The full scenario of the proposed ranking algorithm can be found in Alg. 2.

3. DATASET AND RESULTS

Due to the availability of large amount of cancerous cases, we used a public dataset provided by The Cancer
Genome Atlas (TCGA). Most of the Gleason pattern types are between 3-5 and the available Gleason scores are
from 6 to 10. The cases were selected based on image quality and the balance between HG-PCa (Gleason score
≥ 7) and LG-PCa (Gleason score ≤ 6).



BCR Patient Barcode Gleason Score
TCGA-G9-7523 10
TCGA-XQ-A8TA 10
TCGA-EJ-5507 9
TCGA-HI-7171 9
TCGA-EJ-A46G 8
TCGA-G9-7510 8
TCGA-EJ-7314 7
TCGA-EJ-7315 7

(a) HG-PCa cases.

BCR Patient Barcode Gleason Score
TCGA-2A-A8VL 6
TCGA-2A-A8VO 6
TCGA-2A-A8VV 6
TCGA-2A-AAYO 6
TCGA-2A-AAYU 6
TCGA-EJ-5517 6
TCGA-EJ-7321 6
TCGA-G9-6342 6

(b) LG-PCa cases.
Figure 2. The dataset obtained from TCGA.

(a) The distribution of HG-/LG-PCa samples over 100
runs before ranking.

(b) After ranking, most of HG-PCa samples are “raised”
to higher ranks.

Figure 3. The change of distribution before and after ranking. In the plots, the x-axes represent the samples and the
y-axes are the runs of experiments. Yellow represents HG-PCa and blue is LG-PCa.

3.1 Experiments and Breakthrough Results
We tested the system 100 runs and obtained the average performance. In each run, we randomly selected 100
images (50 high-grade and 50 low-grade) as the testing patterns from all 682 images. The rest of 582 images were
used as the training patterns. In the testing phase, we shuffled these 100 testing images such that the information
of the label of each individual image was excluded. Then, these 100 images were classified and ranked by the
proposed method. The results of detection and ranking are shown as follows:

• Detection: Over all 100 ranks of all 100 runs, the mean AUC was 0.9486± 0.005 and the mean accuracy
achieved 95.57% ± 2.1%. The average of classification accuracy of each rank is shown in Fig. 4(a). One
can see that due to the ranking operation, most of the mis-classified images is located about the region of
50-51 of all 100 ranks as this region is the transition between high-grade and low-grade after ranking. We
compared our algorithm with 2 cutting-edge methods of detection: first, the method proposed by Weingant
et al.,2 the AUC is about 0.703 − 0.705. Second, the method proposed by Huang et al.,4 the accuracy is
93.7% ± 3.3%. One can find significant improvement in our approach. Note that the methods that we
compared were evaluated using private datasets provided by their corresponding institutes. They were not
available to the public for more precise comparison. On the other hand, our method is evaluated based
on a public dataset. Thus, the results are objectively repeatable and the method is objectively open for
further adaptations and improvements.

• Ranking: The probability that the testing image patch of a rank is high-grade is shown in Fig. 4(b). We
computed the probability that the image which is assigned to a specific rank is high-grade. It is clearly
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(b) The probability that a rank is high-grade.
Figure 4. The results of detection and ranking 100 (50 HG- and 50 LG-) randomly selected PCa images. The x-axes are
the ranks after sorting. Higher rank means higher probability to be high-grade.

that the testing patterns are ranked properly as the testing image in a higher rank has higher probability
to be high-grade. Some examples are shown in Fig. 5. For the comparison with cutting-edge methods of
ranking, to the authors’ knowledge, our work is the first one involving ranking WSI images for high-grade
PCa as we were not able to find any relevant existing work.

4. CONCLUSIONS

An automated prostate cancer computer-aided diagnosis system is reported. The system is able to evaluate high-
grade prostate cancer (HG-PCa) on whole slide images (WSIs), based on the ability of mimicking the operation
of the pathologist in a clinical practice, including detection and ranking fields of view (FOVs). The system
has been tested using a public dataset, The Cancer Genome Atlas (TCGA). By comparing the system with
existing methods, we highlighted significant improvements in terms of high accuracy of detection and excellent
performance of ranking. Hence, the proposed method has a great potential to support pathologists in their daily
practice.
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