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ABSTRACT

Exploring the spatial interactions between tumor and the

inflammatory microenvironment using digital pathology im-

age analysis can contribute to a better understanding of the

immune function and tumor heterogeneity. We address this

by providing tools able to reveal various metrics describing

spatial relationships in the cancer ecosystem. The approach

comprises nuclei segmentation and classification, using su-

pervised learning algorithm, to detect lymphoid aggregates

and tumor patterns, and spatial distribution quantification us-

ing sparse sets’ mathematical morphology. Tumor patterns

were classified into three groups: surrounded by lympho-

cytes, close to lymphoid aggregates or distant and might be

protected from immune attack. The approach provides statis-

tical assessment and comprehensive visual representation of

the inflammatory tumor microenvironment.

Index Terms— Tumor-immune system interaction, spa-

tial relation modeling, mathematical morphology, graph rep-

resentation, digital histopathology

1. INTRODUCTION AND RELATED WORK

Tumor inhabits a cellular environment composed of parts of

different types, such as immune cells, blood vessels, collagen,

fat and many other cell types. The whole of these compo-

nents is referred to as the tumor microenvironment (TME).

The interactions between tumor and its TME are recognized

as playing an important role in the progression of the disease.

In particular, the inflammatory microenvironment (iTME) is

known to have a great impact on the tumor behavior [1,2].

With the progress being made in the development of can-

cer immunotherapy, a considerable number of efforts have

focused on the understanding of the immune system-cancer

interactions. By understanding these interactions, tumor may

be treated more effectively. Links have been shown to exist

between clinical outcome and immune cell presence, rela-

tive abundance, as well as spatial proximity of immune cells

to invasive cancer cells. In [3], metrics describing absolute

cell number, relative cell type proportion (ratio) and density

(minimum, median and maximum) based on the 50 nearest

neighbors, were computed. The study was conducted among

768 H&E-stained surgical samples of breast tumors. From

the set of parameters of this model, only median lymphocyte

density was associated with one of the clinical variables; the

predictor of pathological complete response (pCR), which is

an important histological indicator of chemotherapy response.

In [4], the cancer cell density was quantified using kernel es-

timator. Then, for every lymphocyte, its spatial proximity

to cancer was quantified with the cancer density landscape

at its location. A quantitative measure of tumor-lymphocyte

ratio was found to be significantly associated with disease-

specific survival based on statistical modelling conducted

on 181 H&E-stained breast cancer tissues. In [5], a clinical

outcome analysis revealed that the degree of clustering of

dendritic cells in tumor-positive lymph nodes correlated with

the duration of disease-free survival in breast cancer patients.

The study was conducted on 59 tissue sections using dif-

ferent immunohistochemistry stains that highlight different

immune cell types. To investigate the interactions between

dendritic cells and T cells, the contact between two cells was

defined as co-localization within a radius of 100 pixels. In

[6], based on spatial statistics, spatial grouping patterns of T

and B cells were found different between healthy and breast

cancer lymph nodes. The cell density was estimated using the

Gaussian kernel density estimation method. The study was

conducted on 25 patients using different immunohistochem-

istry staining techniques. In another study [7], it was found

that the amount of co-localized cancer and immune hotspots,

weighted by tumor area, correlates with a better prognosis in

univariate and multivariate analysis. The study was carried

out on H&E-stained tumor section images from 245 breast

cancer patients. In [8], three classes of interactions between

tumor and immune cells were defined: surveillance (S), indi-

cating a low chance, combat and surveillance (CS), indicating

intermediate chance of interaction, and combat (C), indicat-



ing high chance of interaction. Immune cell clusters were

classified using a supervised learning algorithm based on the

abundance, the distance to tumor cells and clustering behav-

ior (computed using K-means algorithm).

These approaches are based mainly on spatial statistics for

measuring the heterogeneity of immune cell infiltration in

tumors. We hereby propose a different approach where the

spatial information is given straight by the morphology of the

tissue using graph-based mathematical morphology. Graph-

based methods were proven to be effective in many appli-

cations in image processing and analysis the recent decades

[9,10]. Nowadays, with the expanding field of digital pathol-

ogy, they are gaining large popularity in histopathology image

analysis, as they describe spatial characteristics and neigh-

borhood relationships that are visually interpreted by the

pathologist during the examination of a tissue specimen [11-

16].

In this framework, we propose a new graph-based approach

to characterize the spatial relationships existing in the cellu-

lar environment of tumors using sparse sets’ mathematical

morphology (MM). The tools of morphology on graphs were

first used in [17] to study the neighborhood relationships

between cells in germinal centers from lymph nodes, then

in [18,19] for semantic spatial configuration modeling in

histopathology. We continue these efforts by focusing on the

characterization of the spatial distribution of tumor cells and

the interactions with surrounding normal cells. TME is com-

posed of a wide range of biological structures but this work

is dedicated to the characterization of the immune-cancer

interactions.

The next section provides a description of the proposed ap-

proach. First, we present our nuclei segmentation and classi-

fication algorithm. Then, we introduce our technique for the

identification of significant spatial clusters of cells, before we

describe our framework for the characterization of the spatial

interactions between tumor cell and immune cell aggregates.

Section 3 describes the experiments and results of this study.

Finally, a conclusion summarizes our main contribution and

further works.

2. METHOD

2.1. Nuclei segmentation and classification

In digital pathology image analysis, the extraction of mean-

ingful information describing the relationships between the

tumor and its microenvironment relies on an accurate cell

identification technique. In this paragraph, we present our ap-

proach for nuclei segmentation and classification from HES

(Hematoxylin-Eosin-Saffron)-stained breast cancer tissue. In

the following, a tissue image is subdivided into a series of tiles

of size 1024× 1024 at 0.495µm per pixel. Nuclei segmenta-

tion and classification is performed on each tile separately.

2.1.1. Nuclei segmentation

First, we apply a fast superpixel segmentation algorithm,

called SLIC [20], that clusters pixels in the five-dimensional

color and image plane space to efficiently generate compact,

nearly uniform small regions. Each region is expected to rep-

resent a specific biological structure. The number of desired

superpixels and the compact factor of SLIC algorithm were

set to 3500 and 35, respectively. Then, a stain separation

is performed using a color deconvolution algorithm [21] in

order to distinguish nuclear regions. To circumvent the prob-

lem of variability in hematoxylin concentration, a histogram

stretching is employed to the hematoxylin channel, output

of the color deconvolution algorithm, which contains real

values in [0 1]. Nuclear objects are then extracted by image

thresholding, i.e. where the hematoxylin intensity is greater

than 0.4, followed by morphological filtering and small ob-

ject removal. At this step, some segmented nuclei may be

overlapped. Therefore, we use the output of the superpixel

segmentation algorithm to make nuclei separation and de-

lineate the nuclei boundaries. It should be noted that this

separation technique, i.e. using SLIC segmentation, gives

better results than watershed-based methods. The parameter

values of this algorithm were chosen based on optimiza-

tion of the detection F-score on the dataset provided in [22].

Qualitative results are shown in figure 1.

(a) (b)

Fig. 1. (a) Example of a 512 × 512 image of HES-stained

breast cancer tissue. (b) Result of nuclei segmentation

2.1.2. Nuclei classification

The purpose of this step is to classify the nuclei detected dur-

ing the previous step into three classes: epithelial cells, im-

mune cells and fibroblasts. Therefore, we use a supervised

learning algorithm based on color and texture features. In or-

der to generate a ground truth for the learning algorithm, we

have manually annotated 2533 regions. Each region contains

one or more nuclei of the same class. The regions were cho-

sen from 1005 tiles, extracted from 17 whole slide images.

The learning and evaluation of the classification algorithm

were restricted to the annotated area. The total number of nu-

clei detected within the annotated regions is 112125 (77676

cancer nuclei, 31037 immune cell nuclei, and 3412 fibrob-



lasts).

The color features extracted were calculated within the seg-

mented nucleus area, but also in the area surrounding the nu-

cleus, as it gives contextual information. The area is defined

by a morphological dilation with a radius r = 20 of the seg-

mented nucleus object. The color features are therefore the

mean, the standard deviation and the median of each of the

RGB channels, hematoxylin channel, the gray-intensity, the

blue ratio BR and the red ratio RR, given by the following

equations:

BR = 255×B

(1+R+G)(1+R+G+B) and RR = R

1+G+B+
(G−B)2

1+G+B
+R

The texture features are calculated from a 100×100 frame

centered at the nuclear centroid. Four statistics are calculated

(Contrast, Correlation, Energy, and Homogeneity) from the

Gray-Level Co-occurrence Matrix (GLCM) with 8 levels and

a step of 1 pixel in 4 directions (0◦, 45◦, 90◦, and 135◦),

applied to both grey-level and blue ratio images. Also five

statistics were extracted (mean, standard deviation, skewness,

kurtosis and entropy) from the results of the convolution of

the blue ratio image with 5-sized Laws’ masks [23].

The proposed features were chosen using Fisher Score for

feature selection after fine-tuning the different parameters,

techniques and channels. The total number of the selected

features is 147 features, chosen out of 1425 features. The

average accuracy of the classification using Random Forest

classifier based on the selected features is 0.9612. Qualitative

results are shown in figure 2.b.

2.2. Sparse sets’ mathematical morphology

Mathematical morphology on graphs was first explored by

Vincent et al. [26], where the morphological operators per-

form on the graph nodes rather than the image pixels. This

theory provides a great number of powerful tools for studying

graphs that can be defined on a given set of objects depending

on a desirable neighborhood relationship. In this study, we

perform morphological operations on the indices (labels) of

the vertices of the graph. Let G = (V,E) be a simple graph

comprising a set V of vertices and a set E ⊆ V ×V of edges,

we associate for each vertex v a value I(v), that represents

its cell type, i.e. cancer cell, immune cell, fibroblast, and we

denote G = (V,E, I).
The morphological dilation of G is defined by the graph

δ(G) = (V,E, Id) such that Id(v) = max{I(u), u ∈
NG(v)}, ∀v ∈ V . The morphological erosion of G is de-

fined by the graph ǫ(G) = (V,E, Ie) such that Ie(v) =
min{I(u), u ∈ NG(v)}, ∀v ∈ V .

We define dilation of order n as

δn(G) = δ ◦ δ ◦ · · · ◦ δ(G), n times.

Similarly, we define erosion of order n as

ǫn(G) = ǫ ◦ ǫ ◦ · · · ◦ ǫ(G), n times.

2.3. Tumor and lymphoid aggregates detection

To identify the location of significant cell aggregates, state-

of-the-art approaches use mainly spatial statistics methods.

In [5], the authors used a density-based clustering (DBC) al-

gorithm [25] that groups cells that are close to each other in

Euclidean distance into clusters. In [7], Getis-Ord analysis al-

gorithm [26] was used to detect statistically significant cancer

and immune hotspots. In our approach, we use graph-based

mathematical morphology to detect hotspots.

The nodes that we have to this step correspond to the locations

of detected nuclei. Another TME component that should also

be considered is the connective tissue as it reflects spatial de-

limitation of between tumor aggregates (TA). Therefore, col-

lagen fibers are segmented by thresholding the red ratio image

(section 2.1.2), followed by morphological filtering. Then,

nodes are extracted from the centroids of the superpixels of

collagen.

The first step consists of setting up a neighborhood relation-

ship between the different cells. In our study, we have chosen

Delaunay graph [11] where its built on all nuclei and collagen

nodes and refined by alpha-shape filter [27] to circumvent the

border effects. We denote G(V,E, I) the labeled graph ob-

tained after filtering. We denote Gc(V,E, Ic) the subgraph of

all nuclei of type c, where Ic(v) = 1 if the node v is of class c

and zero otherwise. Each connected component of the graph

Gc represents cells of the same class c that are connected

to each other without being interfered with other cell types.

Hence, it is a first result of cell aggregate detection. Since

we are interested in significant clusters of cells, we perform a

morphological filtering to remove small, morphologically un-

stable aggregates of cells. Immune system (IS) hotspots are

detected using the operation δ3(ǫ2(GIS)) and tumor patterns

are detected using the operation δ1(ǫ1(GIS)). We have cho-

sen larger radius values for IS cell filtering because lymphoid

aggregates are compact and dense, when they exist in general.

Qualitative results are shown in figure 2.c The morphological

operations permit also to filter the errors that occurred during

the nuclei detection and classification steps.

2.4. Quantification of the immune-cancer interactions

To investigate the spatial interactions between tumor and

immune cells, we first generate the morphological distance

map (MDM) of the immune system from its hotpots. The

MDM associates to each node of the graph G its geodesic

distance from the IS hotspots. MDM is calculated using an

algorithm based on recursive morphological erosions of the

graph G ¯IH(V,E, I
¯IH), where ¯IH is the set of all nodes

that dont belong to immune hotspots. The geodesic distance

value at iteration i of the vertex v is calculated by addition

of (+1) after the erosion i. The process is repeated until all

nodes G ¯IH are null. Figure 2.d shows the MDM value at

each tumor cell. The approach offers a comprehensive visual

representation about the degree of interaction of each tumor

cell with immune system hotspots. Reddish-colored cancer

cells have great spatial interactions with the inflammatory mi-

croenvironment. While bluish-colored cancer cells are distant



from the immune infiltration.

(a) (b)

(c) (d)

(e)

Fig. 2. (a) Original HES image. (b) Result of nuclei classifi-

cation. (c) Morphological Filtering output. (d) Morphological

Distance Map. (e) Cancer-immune spatial interaction repre-

sentation

3. RESULTS AND DISCUSSION

In order to assess the validity of our approach we have defined

and annotated three tumor-immune interaction scores: (i) TA

entirely surrounded by immune cells, (ii) TA close to immune

aggregates, and (iii) TA far from lymphoid infiltration, and

might be protected from the immune attack. Figure 3 shows

the mean of MDM values of tumor cells of TAs from different

types. Tumor nodes that belong to a unique TA are calculated

using Depth-First Search algorithm for connected component

labeling. For a quantitative evaluation, we have annotated 340

tumor aggregates with one of the 3 classes from 15 whole

slide images of breast cancer tissues. The diagram in figure 3

demonstrates the characterization of the 3 interaction scores

defined previously. The mean MDM value of TAs that are

entirely surrounded by immune cells are very low comparing

to those of TAs that are just in contact with immune hotspot,

which in turn have lower values than TA that were evaluated

distant from immune hotspots. More features, such as enclos-

ing, could be calculated from only the edges of the TAs rather

than all nodes. The flexibility and the scalability of the ap-

proach are some of its most important advantages. In fact,

this technique allow us to use morphological operations on an

entire whole slide image at the nuclear level, which wouldnt

be possible with classical mathematical morphology due to

the very large size of the image at low resolution. The tech-

nique is adjustable to different application in digital pathol-

ogy image analysis, i.e. tumors of different organs and to

tissue with different stains. This approach works identically

in the three-dimensional space as in the bi-dimensional, see-

ing the progress being made in the development of the 3D

Histopathology. The approach gives also a visual interpre-

tation of the spatial interactions in the inflammatory tumor

microenvironment, which can help the pathologist during the

evaluation of the immune response.

Fig. 3. Interpretation of the morphological parameters

4. CONCLUSION

In this work, we have presented a conceptual framework for

analyzing the spatial interactions between cancer and immune

system in histopathology images using graph-based mathe-

matical morphology. Features that could lead to a better

understanding of immune changes in the tumor microenvi-

ronment were proposed. In our future works, we will study

the heterogeneity of the spatial interactions described in this

work on a large dataset in order to uncover interdependencies

with clinical outcome and/or genomic features.
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